These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 12779385)
1. Complex mixed-mode periodic and chaotic oscillations in a simple three-variable model of nonlinear system. Kawczynski AL; Khavrus VO; Strizhak PE Chaos; 2000 Jun; 10(2):299-310. PubMed ID: 12779385 [TBL] [Abstract][Full Text] [Related]
2. Complex and chaotic oscillations in a model for the catalytic hydrogen peroxide decomposition under open reactor conditions. Schmitz G; Kolar-Anić L; Anić S; Grozdić T; Vukojević V J Phys Chem A; 2006 Aug; 110(34):10361-8. PubMed ID: 16928130 [TBL] [Abstract][Full Text] [Related]
3. Mixed-mode oscillations in a homogeneous pH-oscillatory chemical reaction system. Bakes D; Schreiberová L; Schreiber I; Hauser MJ Chaos; 2008 Mar; 18(1):015102. PubMed ID: 18377083 [TBL] [Abstract][Full Text] [Related]
4. Complex dynamics in the Oregonator model with linear delayed feedback. Sriram K; Bernard S Chaos; 2008 Jun; 18(2):023126. PubMed ID: 18601493 [TBL] [Abstract][Full Text] [Related]
5. Complex dynamics and enhanced photosensitivity in a modified Belousov-Zhabotinsky reaction. Li N; Zhao J; Wang J J Chem Phys; 2008 Jun; 128(24):244509. PubMed ID: 18601350 [TBL] [Abstract][Full Text] [Related]
6. Spiral instabilities in media supporting complex oscillations under periodic forcing. Gao Q; Li J; Zhang K; Epstein IR Chaos; 2009 Sep; 19(3):033134. PubMed ID: 19792014 [TBL] [Abstract][Full Text] [Related]
7. Relative abundance and structure of chaotic behavior: the nonpolynomial Belousov-Zhabotinsky reaction kinetics. Freire JG; Field RJ; Gallas JA J Chem Phys; 2009 Jul; 131(4):044105. PubMed ID: 19655835 [TBL] [Abstract][Full Text] [Related]
8. Normally attracting manifolds and periodic behavior in one-dimensional and two-dimensional coupled map lattices. Giberti C; Vernia C Chaos; 1994 Dec; 4(4):651-663. PubMed ID: 12780142 [TBL] [Abstract][Full Text] [Related]
10. Transient complex oscillations in a closed chemical system with coupled autocatalysis. Zhao J; Chen Y; Wang J J Chem Phys; 2005 Mar; 122(11):114514. PubMed ID: 15836236 [TBL] [Abstract][Full Text] [Related]
11. Scalings of mixed-mode regimes in a simple polynomial three-variable model of nonlinear dynamical systems. Khavrus VO; Strizhak PE; Kawczyński AL Chaos; 2003 Mar; 13(1):112-22. PubMed ID: 12675416 [TBL] [Abstract][Full Text] [Related]
12. Stern-Brocot trees in the periodicity of mixed-mode oscillations. Freire JG; Gallas JA Phys Chem Chem Phys; 2011 Jul; 13(26):12191-8. PubMed ID: 21340078 [TBL] [Abstract][Full Text] [Related]
13. High-frequency oscillations in the Belousov-Zhabotinsky reaction. Bánsági T; Leda M; Toiya M; Zhabotinsky AM; Epstein IR J Phys Chem A; 2009 May; 113(19):5644-8. PubMed ID: 19374364 [TBL] [Abstract][Full Text] [Related]
14. Complex oscillations in a simple model for the Briggs-Rauscher reaction. Kim KR; Shin KJ; Lee DJ J Chem Phys; 2004 Aug; 121(6):2664-72. PubMed ID: 15281867 [TBL] [Abstract][Full Text] [Related]
15. A bifurcation analysis of two coupled calcium oscillators. Bindschadler M; Sneyd J Chaos; 2001 Mar; 11(1):237-246. PubMed ID: 12779457 [TBL] [Abstract][Full Text] [Related]
16. A simple model of chaotic advection and scattering. Stolovitzky G; Kaper TJ; Sirovich L Chaos; 1995 Dec; 5(4):671-686. PubMed ID: 12780224 [TBL] [Abstract][Full Text] [Related]
17. Chaos at the border of criticality. Medvedev GS; Yoo Y Chaos; 2008 Sep; 18(3):033105. PubMed ID: 19045443 [TBL] [Abstract][Full Text] [Related]
18. Complex dynamics in a simple model of pulsations for super-asymptotic giant branch stars. Munteanu A; Garcia-Berro E; Jose J; Petrisor E Chaos; 2002 Jun; 12(2):332-343. PubMed ID: 12779562 [TBL] [Abstract][Full Text] [Related]
19. Oscillations, period doublings, and chaos in CO oxidation and catalytic mufflers. Marek M; Schejbal M; Kocí P; Nevoral V; Kubícek M; Hadac O; Schreiber I Chaos; 2006 Sep; 16(3):037107. PubMed ID: 17014241 [TBL] [Abstract][Full Text] [Related]
20. Numerical study of reverse period doubling route from chaos to stability in a two-mode intracavity doubled Nd-YAG laser. Kuruvilla T; Nandakumaran VM Chaos; 1999 Mar; 9(1):208-212. PubMed ID: 12779815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]