These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 12779414)

  • 1. One-dimensional three-body problem via symbolic dynamics.
    Tanikawa K; Mikkola S
    Chaos; 2000 Sep; 10(3):649-657. PubMed ID: 12779414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaos in the one-dimensional gravitational three-body problem.
    Hietarinta J; Mikkola S
    Chaos; 1993 Apr; 3(2):183-203. PubMed ID: 12780027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of periodic orbits in the four- and five-body problems.
    Broucke RA
    Ann N Y Acad Sci; 2004 May; 1017():408-21. PubMed ID: 15220159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilizing long-period orbits via symbolic dynamics in simple limiter controllers.
    Zhou CT
    Chaos; 2006 Mar; 16(1):013109. PubMed ID: 16599740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using chaos to generate variations on movement sequences.
    Bradley E; Stuart J
    Chaos; 1998 Dec; 8(4):800-807. PubMed ID: 12779786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical properties of actions of periodic orbits.
    Sano MM
    Chaos; 2000 Mar; 10(1):195-210. PubMed ID: 12779375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Globally enumerating unstable periodic orbits for observed data using symbolic dynamics.
    Buhl M; Kennel MB
    Chaos; 2007 Sep; 17(3):033102. PubMed ID: 17902984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A note on chaotic unimodal maps and applications.
    Zhou CT; He XT; Yu MY; Chew LY; Wang XG
    Chaos; 2006 Sep; 16(3):033113. PubMed ID: 17014218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global analysis of periodic orbit bifurcations in coupled Morse oscillator systems: time-reversal symmetry, permutational representations and codimension-2 collisions.
    Tsuchiya M; Ezra GS
    Chaos; 1999 Dec; 9(4):819-840. PubMed ID: 12779878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periodic orbits in a two-variable coupled map.
    Houlrik JM
    Chaos; 1992 Jul; 2(3):323-327. PubMed ID: 12779981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics.
    Koon WS; Lo MW; Marsden JE; Ross SD
    Chaos; 2000 Jun; 10(2):427-469. PubMed ID: 12779398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normally attracting manifolds and periodic behavior in one-dimensional and two-dimensional coupled map lattices.
    Giberti C; Vernia C
    Chaos; 1994 Dec; 4(4):651-663. PubMed ID: 12780142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Order and chaos in the planar isosceles three-body problem.
    Zare K; Chesley S
    Chaos; 1998 Jun; 8(2):475-494. PubMed ID: 12779751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unstable periodic orbits and templates of the Rossler system: Toward a systematic topological characterization.
    Letellier C; Dutertre P; Maheu B
    Chaos; 1995 Mar; 5(1):271-282. PubMed ID: 12780181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical experiments of the planar equal-mass three-body problem: the effects of rotation.
    Kuwabara KH; Tanikawa K
    Chaos; 2007 Sep; 17(3):033105. PubMed ID: 17902987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On a simple recursive control algorithm automated and applied to an electrochemical experiment.
    Rhode MA; Rollins RW; Dewald HD
    Chaos; 1997 Dec; 7(4):653-663. PubMed ID: 12779691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the global orbits in a bistable CML.
    Coutinho R; Fernandez B
    Chaos; 1997 Jun; 7(2):301-310. PubMed ID: 12779658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On parameter estimation of chaotic systems via symbolic time-series analysis.
    Piccardi C
    Chaos; 2006 Dec; 16(4):043115. PubMed ID: 17199393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible maps in two-degrees of freedom Hamiltonian systems.
    Zare K; Tanikawa K
    Chaos; 2002 Sep; 12(3):699-705. PubMed ID: 12779598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embedding dynamics for round-off errors near a periodic orbit.
    Lowenstein JH; Vivaldi F
    Chaos; 2000 Dec; 10(4):747-755. PubMed ID: 12779424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.