These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 12779421)

  • 1. Resonantly forced inhomogeneous reaction-diffusion systems.
    Hemming CJ; Kapral R
    Chaos; 2000 Sep; 10(3):720-730. PubMed ID: 12779421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turbulent fronts in resonantly forced oscillatory systems.
    Hemming C; Kapral R
    Faraday Discuss; 2001; (120):371-82; discussion 407-19. PubMed ID: 11901686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonant and nonresonant patterns in forced oscillators.
    Marts B; Hagberg A; Meron E; Lin AL
    Chaos; 2006 Sep; 16(3):037113. PubMed ID: 17014247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Front explosion in a periodically forced surface reaction.
    Davidsen J; Mikhailov A; Kapral R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046214. PubMed ID: 16383519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of scroll wave turbulence in a three-dimensional reaction-diffusion system with gradient.
    Qiao C; Wu Y; Lu X; Wang C; Ouyang Q; Wang H
    Chaos; 2008 Jun; 18(2):026109. PubMed ID: 18601511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Termination of spiral wave breakup in a Fitzhugh-Nagumo model via short and long duration stimuli.
    Gray RA
    Chaos; 2002 Sep; 12(3):941-951. PubMed ID: 12779618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parametrically forced pattern formation.
    Armbruster D; George M; Oprea I
    Chaos; 2001 Mar; 11(1):52-56. PubMed ID: 12779440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of one- and two-dimensional kinks in bistable reaction-diffusion equations with quasidiscrete sources of reaction.
    Rotstein HG; Zhabotinsky AM; Epstein IR
    Chaos; 2001 Dec; 11(4):833-842. PubMed ID: 12779522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oscillatory pulses in FitzHugh-Nagumo type systems with cross-diffusion.
    Zemskov EP; Epstein IR; Muntean A
    Math Med Biol; 2011 Jun; 28(2):217-26. PubMed ID: 20685831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance tongues and patterns in periodically forced reaction-diffusion systems.
    Lin AL; Hagberg A; Meron E; Swinney HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066217. PubMed ID: 15244718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Front reversals, wave traps, and twisted spirals in periodically forced oscillatory media.
    Rudzick O; Mikhailov AS
    Phys Rev Lett; 2006 Jan; 96(1):018302. PubMed ID: 16486527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Front explosions in three-dimensional resonantly-forced oscillatory systems.
    Hemming CJ; Kapral R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026203. PubMed ID: 14525080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex patterns in reaction-diffusion systems: A tale of two front instabilities.
    Hagberg A; Meron E
    Chaos; 1994 Sep; 4(3):477-484. PubMed ID: 12780123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pattern formation in forced reaction diffusion systems with nearly degenerate bifurcations.
    Halloy J; Sonnino G; Coullet P
    Chaos; 2007 Sep; 17(3):037107. PubMed ID: 17903014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speed of traveling fronts in a sigmoidal reaction-diffusion system.
    Zemskov EP; Kassner K; Tsyganov MA; Epstein IR
    Chaos; 2011 Mar; 21(1):013115. PubMed ID: 21456829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonannihilation dynamics in an exothermic reaction-diffusion system with mono-stable excitability.
    Mimura M; Nagayama M
    Chaos; 1997 Dec; 7(4):817-826. PubMed ID: 12779706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific external forcing of spatiotemporal dynamics in reaction-diffusion systems.
    Lebiedz D; Brandt-Pollmann U
    Chaos; 2005 Jun; 15(2):23901. PubMed ID: 16035896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiphase patterns in periodically forced oscillatory systems.
    Elphick C; Hagberg A; Meron E
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):5285-91. PubMed ID: 11969488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nernst-Planck analysis of propagating reaction-diffusion fronts in the aqueous iodate-arsenous acid system.
    Mercer SM; Banks JM; Leaist DG
    Phys Chem Chem Phys; 2007 Oct; 9(40):5457-68. PubMed ID: 17925972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fronts and patterns in a spatially forced CDIMA reaction.
    Haim L; Hagberg A; Nagao R; Steinberg AP; Dolnik M; Epstein IR; Meron E
    Phys Chem Chem Phys; 2014 Dec; 16(47):26137-43. PubMed ID: 25360810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.