These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 12779422)

  • 1. Persistence of zero velocity fronts in reaction diffusion systems.
    Kramer L; Gottwald G; Krinsky VI; Pumir A; Barelko VV
    Chaos; 2000 Sep; 10(3):731-737. PubMed ID: 12779422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bistable reaction-diffusion systems can have robust zero-velocity fronts.
    Sepulchre JA; Krinsky VI
    Chaos; 2000 Dec; 10(4):826-833. PubMed ID: 12779432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudo-spectral methods and linear instabilities in reaction-diffusion fronts.
    Jones WB; O'Brien JJ
    Chaos; 1996 Jun; 6(2):219-228. PubMed ID: 12780250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lock-exchange experiments with an autocatalytic reaction front.
    Bou Malham I; Jarrige N; Martin J; Rakotomalala N; Talon L; Salin D
    J Chem Phys; 2010 Dec; 133(24):244505. PubMed ID: 21198000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nernst-Planck analysis of propagating reaction-diffusion fronts in the aqueous iodate-arsenous acid system.
    Mercer SM; Banks JM; Leaist DG
    Phys Chem Chem Phys; 2007 Oct; 9(40):5457-68. PubMed ID: 17925972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of one- and two-dimensional kinks in bistable reaction-diffusion equations with quasidiscrete sources of reaction.
    Rotstein HG; Zhabotinsky AM; Epstein IR
    Chaos; 2001 Dec; 11(4):833-842. PubMed ID: 12779522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the variety of traveling fronts in one-variable multistable reaction-diffusion systems.
    Leda M; KawczyƱski AL
    J Phys Chem A; 2006 Jun; 110(25):7882-7. PubMed ID: 16789776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convection in chemical fronts with quadratic and cubic autocatalysis.
    Vasquez DA; Thoreson E
    Chaos; 2002 Mar; 12(1):49-55. PubMed ID: 12779532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonantly forced inhomogeneous reaction-diffusion systems.
    Hemming CJ; Kapral R
    Chaos; 2000 Sep; 10(3):720-730. PubMed ID: 12779421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers.
    Rongy L; Goyal N; Meiburg E; De Wit A
    J Chem Phys; 2007 Sep; 127(11):114710. PubMed ID: 17887873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advection of chemical reaction fronts in a porous medium.
    Koptyug IV; Zhivonitko VV; Sagdeev RZ
    J Phys Chem B; 2008 Jan; 112(4):1170-6. PubMed ID: 18173259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study of pattern formation during the catalytic oxidation of CO on Pt{100} at low pressures.
    Anghel AT; Hoyle RB; Irurzun IM; Proctor MR; King DA
    J Chem Phys; 2007 Oct; 127(16):164711. PubMed ID: 17979375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between buoyancy and diffusion-driven instabilities of propagating autocatalytic reaction fronts. II. Nonlinear simulations.
    D'Hernoncourt J; Merkin JH; De Wit A
    J Chem Phys; 2009 Mar; 130(11):114503. PubMed ID: 19317541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of spatially nonuniform patterning in the model of blood coagulation.
    Zarnitsina VI; Ataullakhanov FI; Lobanov AI; Morozova OL
    Chaos; 2001 Mar; 11(1):57-70. PubMed ID: 12779441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are diffusion models too simple? a comparison with telegraph models of invasion.
    Holmes EE
    Am Nat; 1993 Nov; 142(5):779-95. PubMed ID: 19425956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of convective patterns in reaction fronts: a comparison of three models.
    Vasquez DA; Coroian DI
    Chaos; 2010 Sep; 20(3):033109. PubMed ID: 20887049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear fingering dynamics of reaction-diffusion acidity fronts: self-similar scaling and influence of differential diffusion.
    Lima D; D'Onofrio A; De Wit A
    J Chem Phys; 2006 Jan; 124(1):14509. PubMed ID: 16409043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex patterns in reaction-diffusion systems: A tale of two front instabilities.
    Hagberg A; Meron E
    Chaos; 1994 Sep; 4(3):477-484. PubMed ID: 12780123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic study of heterogeneous reaction of deliquesced NaCl particles with gaseous HNO3 using particle-on-substrate stagnation flow reactor approach.
    Liu Y; Cain JP; Wang H; Laskin A
    J Phys Chem A; 2007 Oct; 111(40):10026-43. PubMed ID: 17850118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.