These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 12779463)

  • 1. Weak mixing and anomalous kinetics along filamented surfaces.
    Zaslavsky GM; Edelman M
    Chaos; 2001 Jun; 11(2):295-305. PubMed ID: 12779463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topological instability along filamented invariant surfaces.
    Carreras BA; Lynch VE; Garcia L; Edelman M; Zaslavsky GM
    Chaos; 2003 Dec; 13(4):1175-87. PubMed ID: 14604409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical structures in the phase space and fractional kinetics: I. Classical systems.
    Zaslavsky GM; Edelman M
    Chaos; 2000 Mar; 10(1):135-146. PubMed ID: 12779369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polynomial dispersion of trajectories in sticky dynamics.
    Zaslavsky GM; Edelman M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036204. PubMed ID: 16241545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Space-time complexity in Hamiltonian dynamics.
    Afraimovich V; Zaslavsky GM
    Chaos; 2003 Jun; 13(2):519-32. PubMed ID: 12777116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design criteria of a chemical reactor based on a chaotic flow.
    Tang XZ; Boozer AH
    Chaos; 1999 Mar; 9(1):183-194. PubMed ID: 12779812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaotic mixing of granular materials in two-dimensional tumbling mixers.
    Khakhar DV; McCarthy JJ; Gilchrist JF; Ottino JM
    Chaos; 1999 Mar; 9(1):195-205. PubMed ID: 12779813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral properties and anomalous transport in a polygonal billiard.
    Artuso R; Guarneri I; Rebuzzini L
    Chaos; 2000 Mar; 10(1):189-194. PubMed ID: 12779374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convergence of Hamiltonian systems to billiards.
    Collas P; Klein D; Schwebler HP
    Chaos; 1998 Jun; 8(2):466-474. PubMed ID: 12779750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle dynamics and mixing in the frequency driven "Kelvin cat eyes" flow.
    Tsega Y; Michaelides EE; Eschenazi EV
    Chaos; 2001 Jun; 11(2):351-358. PubMed ID: 12779469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Lyapunov exponent in inverse magnetic billiards.
    Vörös Z; Tasnádi T; Cserti J; Pollner P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):065202. PubMed ID: 16241292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two-parameter study of the extent of chaos in a billiard system.
    Dullin HR; Richter PH; Wittek A
    Chaos; 1996 Mar; 6(1):43-58. PubMed ID: 12780234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometrical constraints on finite-time Lyapunov exponents in two and three dimensions.
    Thiffeault JL; Boozer AH
    Chaos; 2001 Mar; 11(1):16-28. PubMed ID: 12779437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entropy potential and Lyapunov exponents.
    Lepri S; Politi A; Torcini A
    Chaos; 1997 Dec; 7(4):701-709. PubMed ID: 12779696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topological instability along invariant surfaces and pseudochaotic transport.
    Zaslavsky GM; Carreras BA; Lynch VE; Garcia L; Edelman M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026227. PubMed ID: 16196704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaotic dephasing in a double-slit scattering experiment.
    Levnajić Z; Prosen T
    Chaos; 2010 Dec; 20(4):043118. PubMed ID: 21198088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-reversal-invariant hexagonal billiards with a point symmetry.
    Lima TA; do Carmo RB; Terto K; de Aguiar FM
    Phys Rev E; 2021 Dec; 104(6-1):064211. PubMed ID: 35030857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistics of Poincaré recurrences for maps with integrable and ergodic components.
    Hu H; Rampioni A; Rossi L; Turchetti G; Vaienti S
    Chaos; 2004 Mar; 14(1):160-71. PubMed ID: 15003057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence.
    Lapeyre G
    Chaos; 2002 Sep; 12(3):688-698. PubMed ID: 12779597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-particle circular billiards versus randomly perturbed one-particle circular billiards.
    Ranković S; Porter MA
    Chaos; 2013 Mar; 23(1):013123. PubMed ID: 23556960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.