These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 12779476)

  • 1. Chaotic transition in a three-coupled phase-locked loop system.
    Tsuruda H; Shirahama H; Fukushima K; Nagadome M; Inoue M
    Chaos; 2001 Jun; 11(2):410-416. PubMed ID: 12779476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Populations of coupled electrochemical oscillators.
    Kiss IZ; Wang W; Hudson JL
    Chaos; 2002 Mar; 12(1):252-263. PubMed ID: 12779552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of multistability in the transition to chaotic phase synchronization.
    Postnov DE; Vadivasova TE; Sosnovtseva OV; Balanov AG; Anishchenko VS; Mosekilde E
    Chaos; 1999 Mar; 9(1):227-232. PubMed ID: 12779818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experiments on arrays of globally coupled chaotic electrochemical oscillators: Synchronization and clustering.
    Wang W; Kiss IZ; Hudson JL
    Chaos; 2000 Mar; 10(1):248-256. PubMed ID: 12779380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous spatio-temporal chaos in a two-dimensional system of nonlocally coupled oscillators.
    Nakao H
    Chaos; 1999 Dec; 9(4):902-909. PubMed ID: 12779887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaos suppression through asymmetric coupling.
    Bragard J; Vidal G; Mancini H; Mendoza C; Boccaletti S
    Chaos; 2007 Dec; 17(4):043107. PubMed ID: 18163771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronization and intermittency in three-coupled chaotic oscillators.
    Tsukamoto N; Miyazaki S; Fujisaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016212. PubMed ID: 12636590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An approach to chaotic synchronization.
    Hramov AE; Koronovskii AA
    Chaos; 2004 Sep; 14(3):603-10. PubMed ID: 15446970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universal occurrence of the phase-flip bifurcation in time-delay coupled systems.
    Prasad A; Dana SK; Karnatak R; Kurths J; Blasius B; Ramaswamy R
    Chaos; 2008 Jun; 18(2):023111. PubMed ID: 18601478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase synchronization of chaotic oscillations in terms of periodic orbits.
    Pikovsky A; Zaks M; Rosenblum M; Osipov G; Kurths J
    Chaos; 1997 Dec; 7(4):680-687. PubMed ID: 12779693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Jump intermittency as a second type of transition to and from generalized synchronization.
    Koronovskii AA; Moskalenko OI; Pivovarov AA; Khanadeev VA; Hramov AE; Pisarchik AN
    Phys Rev E; 2020 Jul; 102(1-1):012205. PubMed ID: 32794947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collective chaos synchronization of pairs of modes in a chaotic three-mode laser.
    Otsuka K; Ohtomo T; Yoshioka A; Ko JY
    Chaos; 2002 Sep; 12(3):678-687. PubMed ID: 12779596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aperiodic stochastic resonance in chaotic maps.
    Krawiecki A; Sukiennicki A
    Chaos; 1998 Dec; 8(4):768-774. PubMed ID: 12779782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaotic bursting as chaotic itinerancy in coupled neural oscillators.
    Han SK; Postnov DE
    Chaos; 2003 Sep; 13(3):1105-9. PubMed ID: 12946203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronization transition from chaos to limit cycle oscillations when a locally coupled chaotic oscillator grid is coupled globally to another chaotic oscillator.
    Godavarthi V; Kasthuri P; Mondal S; Sujith RI; Marwan N; Kurths J
    Chaos; 2020 Mar; 30(3):033121. PubMed ID: 32237762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of stochastic phase locking.
    Longtin A
    Chaos; 1995 Mar; 5(1):209-215. PubMed ID: 12780175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clustering zones in the turbulent phase of a system of globally coupled chaotic maps.
    Maistrenko Y; Panchuk A
    Chaos; 2003 Sep; 13(3):990-8. PubMed ID: 12946192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crisis-induced intermittency in two coupled chaotic maps: towards understanding chaotic itinerancy.
    Tanaka G; Sanjuán MA; Aihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016219. PubMed ID: 15697710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stages of chaotic synchronization.
    Tang DY; Dykstra R; Hamilton MW; Heckenberg NR
    Chaos; 1998 Sep; 8(3):697-701. PubMed ID: 12779774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plykin-type attractor in nonautonomous coupled oscillators.
    Kuznetsov SP
    Chaos; 2009 Mar; 19(1):013114. PubMed ID: 19334978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.