These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Food chain chaos with canard explosion. Deng B Chaos; 2004 Dec; 14(4):1083-92. PubMed ID: 15568923 [TBL] [Abstract][Full Text] [Related]
6. Competitive coexistence in stoichiometric chaos. Deng B; Loladze I Chaos; 2007 Sep; 17(3):033108. PubMed ID: 17902990 [TBL] [Abstract][Full Text] [Related]
7. A simple model of chaotic advection and scattering. Stolovitzky G; Kaper TJ; Sirovich L Chaos; 1995 Dec; 5(4):671-686. PubMed ID: 12780224 [TBL] [Abstract][Full Text] [Related]
8. Equilibriumizing all food chain chaos through reproductive efficiency. Deng B Chaos; 2006 Dec; 16(4):043125. PubMed ID: 17199403 [TBL] [Abstract][Full Text] [Related]
9. Stability and bifurcations of a stationary state for an impact oscillator. Aidanpaa JO; Shen HH; Gupta RB Chaos; 1994 Dec; 4(4):621-630. PubMed ID: 12780139 [TBL] [Abstract][Full Text] [Related]
12. Topological invariants in the study of a chaotic food chain system. Duarte J; Januário C; Martins N Chaos; 2008 Jun; 18(2):023109. PubMed ID: 18601476 [TBL] [Abstract][Full Text] [Related]
13. Complex dynamics in a three-level trophic system with intraspecies interaction. Peet AB; Deutsch PA; Peacock-López E J Theor Biol; 2005 Feb; 232(4):491-503. PubMed ID: 15588631 [TBL] [Abstract][Full Text] [Related]
14. Turning point properties as a method for the characterization of the ergodic dynamics of one-dimensional iterative maps. Diakonos FK; Schmelcher P Chaos; 1997 Jun; 7(2):239-244. PubMed ID: 12779652 [TBL] [Abstract][Full Text] [Related]
15. Chaotic capture of vortices by a moving body. II. Bound pair model. Luithardt HH; Kadtke JB; Pedrizzetti G Chaos; 1994 Dec; 4(4):681-691. PubMed ID: 12780145 [TBL] [Abstract][Full Text] [Related]
17. Exponential asymptotic expansions and approximations of the unstable and stable manifolds of singularly perturbed systems with the Henon map as an example. Tovbis A; Tsuchiya M; Jaffe C Chaos; 1998 Sep; 8(3):665-681. PubMed ID: 12779771 [TBL] [Abstract][Full Text] [Related]
19. Order and chaos in the planar isosceles three-body problem. Zare K; Chesley S Chaos; 1998 Jun; 8(2):475-494. PubMed ID: 12779751 [TBL] [Abstract][Full Text] [Related]
20. Chaotic capture of vortices by a moving body. I. The single point vortex case. Kadtke JB; Novikov EA Chaos; 1993 Oct; 3(4):543-553. PubMed ID: 12780060 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]