These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 12779497)

  • 21. Unbiased reconstruction of the dynamics underlying a noisy chaotic time series.
    Jaeger L; Kantz H
    Chaos; 1996 Sep; 6(3):440-450. PubMed ID: 12780274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Compactivity and transmission of stress in granular materials.
    Edwards SF; Grinev DV
    Chaos; 1999 Sep; 9(3):551-558. PubMed ID: 12779851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simple relations between mean passage times and Kramers' stationary rate.
    Boilley D; Jurado B; Schmitt C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056129. PubMed ID: 15600714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Order and chaos in the planar isosceles three-body problem.
    Zare K; Chesley S
    Chaos; 1998 Jun; 8(2):475-494. PubMed ID: 12779751
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimating the amplitude of measurement noise present in chaotic time series.
    Tanaka N; Okamoto H; Naito M
    Chaos; 1999 Jun; 9(2):436-444. PubMed ID: 12779840
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Counting unstable periodic orbits in noisy chaotic systems: A scaling relation connecting experiment with theory.
    Pei X; Dolan K; Moss F; Lai YC
    Chaos; 1998 Dec; 8(4):853-860. PubMed ID: 12779792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamics of a pair of spherical gravitating shells.
    Miller BN; Youngkins VP
    Chaos; 1997 Mar; 7(1):187-197. PubMed ID: 12779647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Noise analysis and MR pulse sequence optimization in MREIT using an injected current nonlinear encoding (ICNE) method.
    Kwon OI; Lee BI; Nam HS; Park C
    Physiol Meas; 2007 Nov; 28(11):1391-404. PubMed ID: 17978423
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wigner function approach to the quantum Brownian motion of a particle in a potential.
    Coffey WT; Kalmykov YP; Titov SV; Mulligan BP
    Phys Chem Chem Phys; 2007 Jul; 9(26):3361-82. PubMed ID: 17664961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monitoring changes in time of chaotic nonlinear systems.
    Wright J
    Chaos; 1995 Jun; 5(2):356-366. PubMed ID: 12780189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport in a slowly perturbed convective cell flow.
    Itin AP; De La Llave R; Neishtadt AI; Vasiliev AA
    Chaos; 2002 Dec; 12(4):1043-1053. PubMed ID: 12779628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Noise-activated escape from a sloshing potential well.
    Maier RS; Stein DL
    Phys Rev Lett; 2001 Apr; 86(18):3942-5. PubMed ID: 11328066
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activated escape of periodically modulated systems.
    Dykman MI; Ryvkine D
    Phys Rev Lett; 2005 Feb; 94(7):070602. PubMed ID: 15783799
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detecting noise in a time series.
    Cellucci CJ; Albano AM; Rapp PE; Pittenger RA; Josiassen RC
    Chaos; 1997 Sep; 7(3):414-422. PubMed ID: 12779669
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Data compression and information retrieval via symbolization.
    Tang XZ; Tracy ER
    Chaos; 1998 Sep; 8(3):688-696. PubMed ID: 12779773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Noise in chaotic data: Diagnosis and treatment.
    Schreiber T; Kantz H
    Chaos; 1995 Mar; 5(1):133-142. PubMed ID: 12780166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Escape from a metastable well: The Kramers turnover problem.
    Grabert H
    Phys Rev Lett; 1988 Oct; 61(15):1683-1686. PubMed ID: 10038869
    [No Abstract]   [Full Text] [Related]  

  • 38. Diffusion and scaling in escapes from two-degrees-of-freedom Hamiltonian systems.
    Kandrup HE; Siopis C; Contopoulos G; Dvorak R
    Chaos; 1999 Jun; 9(2):381-392. PubMed ID: 12779836
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Geometry and topology of escape. II. Homotopic lobe dynamics.
    Mitchell KA; Handley JP; Delos JB; Knudson SK
    Chaos; 2003 Sep; 13(3):892-902. PubMed ID: 12946181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catastrophic extinction, noise-stabilized turbulence and unpredictability of competition in a modified Volterra-Lotka model.
    Goryachev AB; Polezhaev AA; Chernavskii DS
    Chaos; 1996 Mar; 6(1):78-86. PubMed ID: 12780238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.