These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 12779522)
1. Dynamics of one- and two-dimensional kinks in bistable reaction-diffusion equations with quasidiscrete sources of reaction. Rotstein HG; Zhabotinsky AM; Epstein IR Chaos; 2001 Dec; 11(4):833-842. PubMed ID: 12779522 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of kinks in one- and two-dimensional hyperbolic models with quasidiscrete nonlinearities. Rotstein HG; Mitkov I; Zhabotinsky AM; Epstein IR Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066613. PubMed ID: 11415248 [TBL] [Abstract][Full Text] [Related]
3. Localized structures in a nonlinear wave equation stabilized by negative global feedback: one-dimensional and quasi-two-dimensional kinks. Rotstein HG; Zhabotinsky AA; Epstein IR Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016612. PubMed ID: 16907209 [TBL] [Abstract][Full Text] [Related]
4. Dynamics of one- and two-dimensional fronts in a bistable equation with time-delayed global feedback: Propagation failure and control mechanisms. Boubendir Y; Méndez V; Rotstein HG Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036601. PubMed ID: 21230197 [TBL] [Abstract][Full Text] [Related]
5. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers. Rongy L; Goyal N; Meiburg E; De Wit A J Chem Phys; 2007 Sep; 127(11):114710. PubMed ID: 17887873 [TBL] [Abstract][Full Text] [Related]
6. Chaotic mixing induced transitions in reaction-diffusion systems. Neufeld Z; Haynes PH; Tel T Chaos; 2002 Jun; 12(2):426-438. PubMed ID: 12779573 [TBL] [Abstract][Full Text] [Related]
8. Bistable reaction-diffusion systems can have robust zero-velocity fronts. Sepulchre JA; Krinsky VI Chaos; 2000 Dec; 10(4):826-833. PubMed ID: 12779432 [TBL] [Abstract][Full Text] [Related]
9. Propagating fronts, chaos and multistability in a cell replication model. Crabb R; Mackey MC; Rey AD Chaos; 1996 Sep; 6(3):477-492. PubMed ID: 12780278 [TBL] [Abstract][Full Text] [Related]
10. Stability of convective patterns in reaction fronts: a comparison of three models. Vasquez DA; Coroian DI Chaos; 2010 Sep; 20(3):033109. PubMed ID: 20887049 [TBL] [Abstract][Full Text] [Related]
11. Wave front fragmentation due to ventricular geometry in a model of the rabbit heart. Rogers JM Chaos; 2002 Sep; 12(3):779-787. PubMed ID: 12779606 [TBL] [Abstract][Full Text] [Related]
13. Wigner function approach to the quantum Brownian motion of a particle in a potential. Coffey WT; Kalmykov YP; Titov SV; Mulligan BP Phys Chem Chem Phys; 2007 Jul; 9(26):3361-82. PubMed ID: 17664961 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of spatially nonuniform patterning in the model of blood coagulation. Zarnitsina VI; Ataullakhanov FI; Lobanov AI; Morozova OL Chaos; 2001 Mar; 11(1):57-70. PubMed ID: 12779441 [TBL] [Abstract][Full Text] [Related]
16. Nonlinear interactions in a rotating disk flow: From a Volterra model to the Ginzburg-Landau equation. Floriani E; Dudok De Wit T; Le Gal P Chaos; 2000 Dec; 10(4):834-847. PubMed ID: 12779433 [TBL] [Abstract][Full Text] [Related]
17. Eulerian mean flow from an instability of convective plumes. Childress S Chaos; 2000 Mar; 10(1):28-38. PubMed ID: 12779360 [TBL] [Abstract][Full Text] [Related]
18. Solitary Marangoni-driven convective structures in bistable chemical systems. Rongy L; De Wit A Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046310. PubMed ID: 18517735 [TBL] [Abstract][Full Text] [Related]
19. [Stability of spatially nonuniform states of diffuse systems]. Belintsev BN; Livshits MA; Vol'kenshteĭn MV Biofizika; 1978; 23(6):1056-62. PubMed ID: 719020 [TBL] [Abstract][Full Text] [Related]
20. Quasi-two-dimensional dynamics of plasmas and fluids. Horton W; Hasegawa A Chaos; 1994 Jun; 4(2):227-251. PubMed ID: 12780102 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]