These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Orbits in the H(2)O molecule. Efstathiou K; Contopoulos G Chaos; 2001 Jun; 11(2):327-334. PubMed ID: 12779466 [TBL] [Abstract][Full Text] [Related]
8. On a simple recursive control algorithm automated and applied to an electrochemical experiment. Rhode MA; Rollins RW; Dewald HD Chaos; 1997 Dec; 7(4):653-663. PubMed ID: 12779691 [TBL] [Abstract][Full Text] [Related]
10. Exit times and transport for symplectic twist maps. Easton RW; Meiss JD; Carver S Chaos; 1993 Apr; 3(2):153-165. PubMed ID: 12780024 [TBL] [Abstract][Full Text] [Related]
11. On the global orbits in a bistable CML. Coutinho R; Fernandez B Chaos; 1997 Jun; 7(2):301-310. PubMed ID: 12779658 [TBL] [Abstract][Full Text] [Related]
12. On noninvertible mappings of the plane: Eruptions. Billings L; Curry JH Chaos; 1996 Jun; 6(2):108-120. PubMed ID: 12780241 [TBL] [Abstract][Full Text] [Related]
13. Statistical properties of actions of periodic orbits. Sano MM Chaos; 2000 Mar; 10(1):195-210. PubMed ID: 12779375 [TBL] [Abstract][Full Text] [Related]
14. Counting unstable periodic orbits in noisy chaotic systems: A scaling relation connecting experiment with theory. Pei X; Dolan K; Moss F; Lai YC Chaos; 1998 Dec; 8(4):853-860. PubMed ID: 12779792 [TBL] [Abstract][Full Text] [Related]
15. Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Koon WS; Lo MW; Marsden JE; Ross SD Chaos; 2000 Jun; 10(2):427-469. PubMed ID: 12779398 [TBL] [Abstract][Full Text] [Related]
16. On infinite homoclinic orbits induced by unstable periodic orbits in the Lorenz system. Guo S; Luo ACJ Chaos; 2021 Apr; 31(4):043106. PubMed ID: 34251254 [TBL] [Abstract][Full Text] [Related]
17. A simple model of chaotic advection and scattering. Stolovitzky G; Kaper TJ; Sirovich L Chaos; 1995 Dec; 5(4):671-686. PubMed ID: 12780224 [TBL] [Abstract][Full Text] [Related]
19. Turning point properties as a method for the characterization of the ergodic dynamics of one-dimensional iterative maps. Diakonos FK; Schmelcher P Chaos; 1997 Jun; 7(2):239-244. PubMed ID: 12779652 [TBL] [Abstract][Full Text] [Related]
20. Unstable periodic orbits and templates of the Rossler system: Toward a systematic topological characterization. Letellier C; Dutertre P; Maheu B Chaos; 1995 Mar; 5(1):271-282. PubMed ID: 12780181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]