These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 12779530)
41. Geometric determination of classical actions of heteroclinic and unstable periodic orbits. Li J; Tomsovic S Phys Rev E; 2017 Jun; 95(6-1):062224. PubMed ID: 28709367 [TBL] [Abstract][Full Text] [Related]
42. Phantom instabilities in adiabatically driven systems: dynamical sensitivity to computational precision. Jafri HH; Singh TU; Ramaswamy R Chaos; 2012 Sep; 22(3):033103. PubMed ID: 23020442 [TBL] [Abstract][Full Text] [Related]
43. Phase synchronization of chaotic oscillations in terms of periodic orbits. Pikovsky A; Zaks M; Rosenblum M; Osipov G; Kurths J Chaos; 1997 Dec; 7(4):680-687. PubMed ID: 12779693 [TBL] [Abstract][Full Text] [Related]
44. Stability analysis of fixed points via chaos control. Locher M; Johnson GA; Hunt ER Chaos; 1997 Dec; 7(4):590-596. PubMed ID: 12779684 [TBL] [Abstract][Full Text] [Related]
45. Some topological invariants for three-dimensional flows. Dufraine E Chaos; 2001 Sep; 11(3):443-448. PubMed ID: 12779481 [TBL] [Abstract][Full Text] [Related]
46. Exponential asymptotic expansions and approximations of the unstable and stable manifolds of singularly perturbed systems with the Henon map as an example. Tovbis A; Tsuchiya M; Jaffe C Chaos; 1998 Sep; 8(3):665-681. PubMed ID: 12779771 [TBL] [Abstract][Full Text] [Related]
47. Heteroclinic and homoclinic connections in a Kolmogorov-like flow. Suri B; Pallantla RK; Schatz MF; Grigoriev RO Phys Rev E; 2019 Jul; 100(1-1):013112. PubMed ID: 31499915 [TBL] [Abstract][Full Text] [Related]
48. One-dimensional three-body problem via symbolic dynamics. Tanikawa K; Mikkola S Chaos; 2000 Sep; 10(3):649-657. PubMed ID: 12779414 [TBL] [Abstract][Full Text] [Related]
49. Embedding dynamics for round-off errors near a periodic orbit. Lowenstein JH; Vivaldi F Chaos; 2000 Dec; 10(4):747-755. PubMed ID: 12779424 [TBL] [Abstract][Full Text] [Related]
50. Exact relations between homoclinic and periodic orbit actions in chaotic systems. Li J; Tomsovic S Phys Rev E; 2018 Feb; 97(2-1):022216. PubMed ID: 29548081 [TBL] [Abstract][Full Text] [Related]
51. Adaptive strategies for recognition, noise filtering, control, synchronization and targeting of chaos. Arecchi FT; Boccaletti S Chaos; 1997 Dec; 7(4):621-634. PubMed ID: 12779688 [TBL] [Abstract][Full Text] [Related]
52. Periodic orbit analysis at the onset of the unstable dimension variability and at the blowout bifurcation. Pereira RF; de S Pinto SE; Viana RL; Lopes SR; Grebogi C Chaos; 2007 Jun; 17(2):023131. PubMed ID: 17614685 [TBL] [Abstract][Full Text] [Related]
53. Phase space structure and chaotic scattering in near-integrable systems. Koch BP; Bruhn B Chaos; 1993 Oct; 3(4):443-457. PubMed ID: 12780051 [TBL] [Abstract][Full Text] [Related]
54. Separatrices splitting for Birkhoff's billiard in symmetric convex domain, closed to an ellipse. Tabanov MB Chaos; 1994 Dec; 4(4):595-606. PubMed ID: 12780137 [TBL] [Abstract][Full Text] [Related]
55. Detecting invariant manifolds as stationary Lagrangian coherent structures in autonomous dynamical systems. Teramoto H; Haller G; Komatsuzaki T Chaos; 2013 Dec; 23(4):043107. PubMed ID: 24387546 [TBL] [Abstract][Full Text] [Related]
56. Accumulation of unstable periodic orbits and the stickiness in the two-dimensional piecewise linear map. Akaishi A; Shudo A Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066211. PubMed ID: 20365258 [TBL] [Abstract][Full Text] [Related]
57. Analysis of stable periodic orbits in the one dimensional linear piecewise-smooth discontinuous map. Rajpathak B; Pillai HK; Bandyopadhyay S Chaos; 2012 Sep; 22(3):033126. PubMed ID: 23020465 [TBL] [Abstract][Full Text] [Related]
58. Unfolding homoclinic connections formed by corner intersections in piecewise-smooth maps. Simpson DJ Chaos; 2016 Jul; 26(7):073105. PubMed ID: 27475065 [TBL] [Abstract][Full Text] [Related]
59. Invariant manifolds and global bifurcations. Guckenheimer J; Krauskopf B; Osinga HM; Sandstede B Chaos; 2015 Sep; 25(9):097604. PubMed ID: 26428557 [TBL] [Abstract][Full Text] [Related]
60. Dynamical-systems analysis and unstable periodic orbits in reacting flows behind symmetric bluff bodies. Hua JC; Gunaratne GH; Kostka S; Jiang N; Kiel BV; Gord JR; Roy S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033011. PubMed ID: 24125348 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]