These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 12779624)

  • 1. Multifractal chaotic attractors in a system of delay-differential equations modeling road traffic.
    Safonov LA; Tomer E; Strygin VV; Ashkenazy Y; Havlin S
    Chaos; 2002 Dec; 12(4):1006-1014. PubMed ID: 12779624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel nonlinear car-following model.
    Addison PS; Low DJ
    Chaos; 1998 Dec; 8(4):791-799. PubMed ID: 12779785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. n-scroll chaotic attractors from a first-order time-delay differential equation.
    Yalçin ME; Ozoguz S
    Chaos; 2007 Sep; 17(3):033112. PubMed ID: 17902994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ruelle-Takens-Newhouse scenario in reaction-diffusion-convection system.
    Budroni MA; Masia M; Rustici M; Marchettini N; Volpert V; Cresto PC
    J Chem Phys; 2008 Mar; 128(11):111102. PubMed ID: 18361546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cycles homoclinic to chaotic sets; robustness and resonance.
    Ashwin P
    Chaos; 1997 Jun; 7(2):207-220. PubMed ID: 12779649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaotic behavior of a Galerkin model of a two-dimensional flow.
    Chen ZM; Price WG
    Chaos; 2004 Dec; 14(4):1056-68. PubMed ID: 15568920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of secondary whirls in thermoconvective vortices: Strengthening, weakening, and disappearance in the route to chaos.
    Castaño D; Navarro MC; Herrero H
    Phys Rev E; 2016 Jan; 93(1):013117. PubMed ID: 26871164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A vehicle overtaking model of traffic dynamics.
    Jamison S; McCartney M
    Chaos; 2007 Sep; 17(3):033116. PubMed ID: 17902998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moving finite-size particles in a flow: a physical example of pitchfork bifurcations of tori.
    Zahnow JC; Feudel U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026215. PubMed ID: 18352111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverting chaos: Extracting system parameters from experimental data.
    Baker GL; Gollub JP; Blackburn JA
    Chaos; 1996 Dec; 6(4):528-533. PubMed ID: 12780283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anticontrol of chaos in continuous-time systems via time-delay feedback.
    Wang XF; Chen G; Yu X
    Chaos; 2000 Dec; 10(4):771-779. PubMed ID: 12779427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cycling chaotic attractors in two models for dynamics with invariant subspaces.
    Ashwin P; Rucklidge AM; Sturman R
    Chaos; 2004 Sep; 14(3):571-82. PubMed ID: 15446967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaotic interactions of self-replicating RNA.
    Forst CV
    Comput Chem; 1996 Mar; 20(1):69-83. PubMed ID: 16718865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecological consequences of global bifurcations in some food chain models.
    van Voorn GA; Kooi BW; Boer MP
    Math Biosci; 2010 Aug; 226(2):120-33. PubMed ID: 20447411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delayed feedback control of chaos: bifurcation analysis.
    Balanov AG; Janson NB; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016222. PubMed ID: 15697713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaotic operation by a single transistor circuit in the reverse active region.
    Hanias MP; Giannis IL; Tombras GS
    Chaos; 2010 Mar; 20(1):013105. PubMed ID: 20370260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaotic itinerancy generated by coupling of Milnor attractors.
    Tsuda I; Umemura T
    Chaos; 2003 Sep; 13(3):937-46. PubMed ID: 12946186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chaos in a dynamic model of traffic flows in an origin-destination network.
    Zhang X; Jarrett DF
    Chaos; 1998 Jun; 8(2):503-513. PubMed ID: 12779753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bifurcations in a system described by a nonlinear differential equation with delay.
    Ueda Y; Ohta H; Stewart HB
    Chaos; 1994 Mar; 4(1):75-83. PubMed ID: 12780088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chaos control by using Motor Maps.
    Arena P; Fortuna L; Frasca M
    Chaos; 2002 Sep; 12(3):559-573. PubMed ID: 12779586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.