These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 12779634)

  • 1. Dynamics of spatial averages.
    Bunimovich L; Jiang M
    Chaos; 1997 Mar; 7(1):21-26. PubMed ID: 12779634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for visualization of invariant sets of dynamical systems based on the ergodic partition.
    Mezic I; Wiggins S
    Chaos; 1999 Mar; 9(1):213-218. PubMed ID: 12779816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-frequency dynamics of lasers.
    Khanin YI
    Chaos; 1996 Sep; 6(3):373-380. PubMed ID: 12780266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of active systems with a spatially periodic activity: Analysis of a simple model and application to the boiling crisis problem.
    Pumir A; Barelko VV
    Chaos; 2002 Sep; 12(3):610-616. PubMed ID: 12779590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits.
    Gonchenko SV; Shil'nikov LP; Turaev DV
    Chaos; 1996 Mar; 6(1):15-31. PubMed ID: 12780232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized entropies of chaotic maps and flows: A unified approach.
    Badii R
    Chaos; 1997 Dec; 7(4):694-700. PubMed ID: 12779695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periodic orbit analysis of a system with continuous symmetry--A tutorial.
    Budanur NB; Borrero-Echeverry D; Cvitanović P
    Chaos; 2015 Jul; 25(7):073112. PubMed ID: 26232963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global analysis of periodic orbit bifurcations in coupled Morse oscillator systems: time-reversal symmetry, permutational representations and codimension-2 collisions.
    Tsuchiya M; Ezra GS
    Chaos; 1999 Dec; 9(4):819-840. PubMed ID: 12779878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics and kinematics of simple neural systems.
    Rabinovich M; Selverston A; Rubchinsky L; Huerta R
    Chaos; 1996 Sep; 6(3):288-296. PubMed ID: 12780258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamical systems theory for music dynamics.
    Boon JP; Decroly O
    Chaos; 1995 Sep; 5(3):501-508. PubMed ID: 12780206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the use of Fourier averages to compute the global isochrons of (quasi)periodic dynamics.
    Mauroy A; Mezić I
    Chaos; 2012 Sep; 22(3):033112. PubMed ID: 23020451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear lattice dynamics of Bose-Einstein condensates.
    Porter MA; Carretero-González R; Kevrekidis PG; Malomed BA
    Chaos; 2005 Mar; 15(1):15115. PubMed ID: 15836292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing spatial coupling in complex population dynamics using mutual prediction and continuity statistics.
    Nichols JM; Moniz L; Nichols JD; Pecora LM; Cooch E
    Theor Popul Biol; 2005 Feb; 67(1):9-21. PubMed ID: 15649520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On chaotic dynamics in "pseudobilliard" Hamiltonian systems with two degrees of freedom.
    Eleonsky VM; Korolev VG; Kulagin NE
    Chaos; 1997 Dec; 7(4):710-730. PubMed ID: 12779697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient responses to spatial perturbations in advective systems.
    Anderson KE; Nisbet RM; McCauley E
    Bull Math Biol; 2008 Jul; 70(5):1480-502. PubMed ID: 18418657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical ordering of symmetric non-Birkhoff periodic points in reversible monotone twist mappings.
    Tanikawa K; Yamaguchi Y
    Chaos; 2002 Mar; 12(1):33-41. PubMed ID: 12779530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical behavior of the multiplicative diffusion coupled map lattices.
    Wang W; Cerdeira HA
    Chaos; 1996 Jun; 6(2):200-208. PubMed ID: 12780248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculations of periodic orbits: The monodromy method and application to regularized systems.
    Simonovic NS
    Chaos; 1999 Dec; 9(4):854-864. PubMed ID: 12779881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entropy balance, time reversibility, and mass transport in dynamical systems.
    Breymann W; Tel T; Vollmer J
    Chaos; 1998 Jun; 8(2):396-408. PubMed ID: 12779744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modular interdependency in complex dynamical systems.
    Watson RA; Pollack JB
    Artif Life; 2005; 11(4):445-57. PubMed ID: 16197673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.