These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12779642)

  • 1. Indecomposable continua in dynamical systems with noise: Fluid flow past an array of cylinders.
    Sanjuan MA; Kennedy J; Grebogi C; Yorke JA
    Chaos; 1997 Mar; 7(1):125-138. PubMed ID: 12779642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On invariant manifolds attached to oscillating boundaries in Stokes flows.
    Yuster T; Hackborn WW
    Chaos; 1997 Dec; 7(4):769-776. PubMed ID: 12779702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting in Hamiltonian systems that have mixed regular/chaotic phase spaces.
    Schroer CG; Ott E
    Chaos; 1997 Dec; 7(4):512-519. PubMed ID: 12779678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for visualization of invariant sets of dynamical systems based on the ergodic partition.
    Mezic I; Wiggins S
    Chaos; 1999 Mar; 9(1):213-218. PubMed ID: 12779816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cycles homoclinic to chaotic sets; robustness and resonance.
    Ashwin P
    Chaos; 1997 Jun; 7(2):207-220. PubMed ID: 12779649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remark on the (non)convergence of ensemble densities in dynamical systems.
    Goldstein S; Lebowitz JL; Sinai Y
    Chaos; 1998 Jun; 8(2):393-395. PubMed ID: 12779743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-dimensional dynamical systems exploiting instabilities in full.
    Rius J; Figueras M; Herrero R; Farjas J; Pi F; Orriols G
    Chaos; 2000 Dec; 10(4):760-770. PubMed ID: 12779426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stalactite basin structure of dynamical systems with transient chaos in an invariant manifold.
    Dronov V; Ott E
    Chaos; 2000 Jun; 10(2):291-298. PubMed ID: 12779384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Counting unstable periodic orbits in noisy chaotic systems: A scaling relation connecting experiment with theory.
    Pei X; Dolan K; Moss F; Lai YC
    Chaos; 1998 Dec; 8(4):853-860. PubMed ID: 12779792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degenerate resonances in Hamiltonian systems with 3/2 degrees of freedom.
    Morozov AD
    Chaos; 2002 Sep; 12(3):539-548. PubMed ID: 12779584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits.
    Gonchenko SV; Shil'nikov LP; Turaev DV
    Chaos; 1996 Mar; 6(1):15-31. PubMed ID: 12780232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaotic capture of vortices by a moving body. I. The single point vortex case.
    Kadtke JB; Novikov EA
    Chaos; 1993 Oct; 3(4):543-553. PubMed ID: 12780060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple model of chaotic advection and scattering.
    Stolovitzky G; Kaper TJ; Sirovich L
    Chaos; 1995 Dec; 5(4):671-686. PubMed ID: 12780224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible maps in two-degrees of freedom Hamiltonian systems.
    Zare K; Tanikawa K
    Chaos; 2002 Sep; 12(3):699-705. PubMed ID: 12779598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistics of PoincarĂ© recurrences for maps with integrable and ergodic components.
    Hu H; Rampioni A; Rossi L; Turchetti G; Vaienti S
    Chaos; 2004 Mar; 14(1):160-71. PubMed ID: 15003057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regular and chaotic transport of impurities in steady flows.
    Vasiliev AA; Neishtadt AI
    Chaos; 1994 Dec; 4(4):673-680. PubMed ID: 12780144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noise- and inertia-induced inhomogeneity in the distribution of small particles in fluid flows.
    Cartwright JH; Magnasco MO; Piro O
    Chaos; 2002 Jun; 12(2):489-495. PubMed ID: 12779579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum chaos for the radially vibrating spherical billiard.
    Liboff RL; Porter MA
    Chaos; 2000 Jun; 10(2):366-370. PubMed ID: 12779392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-scale continuum mechanics: from global bifurcations to noise induced high-dimensional chaos.
    Schwartz IB; Morgan DS; Billings L; Lai YC
    Chaos; 2004 Jun; 14(2):373-86. PubMed ID: 15189066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On chaotic dynamics in "pseudobilliard" Hamiltonian systems with two degrees of freedom.
    Eleonsky VM; Korolev VG; Kulagin NE
    Chaos; 1997 Dec; 7(4):710-730. PubMed ID: 12779697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.