These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 12779675)

  • 1. Bifurcation analysis of the travelling waveform of FitzHugh-Nagumo nerve conduction model equation.
    Muruganandam P; Lakshmanan M
    Chaos; 1997 Sep; 7(3):476-487. PubMed ID: 12779675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bifurcation, chaos and suppression of chaos in FitzHugh-Nagumo nerve conduction model equation.
    Rajasekar S; Lakshmanan M
    J Theor Biol; 1994 Feb; 166(3):275-88. PubMed ID: 8159015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bifurcation analysis of a normal form for excitable media: are stable dynamical alternans on a ring possible?
    Gottwald GA
    Chaos; 2008 Mar; 18(1):013129. PubMed ID: 18377080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical properties of chemical systems near Hopf bifurcation points.
    Ipsen M; Schreiber I
    Chaos; 2000 Dec; 10(4):791-802. PubMed ID: 12779429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability conditions for the traveling pulse: Modifying the restitution hypothesis.
    Cytrynbaum E; Keener JP
    Chaos; 2002 Sep; 12(3):788-799. PubMed ID: 12779607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On creation of Hopf bifurcations in discrete-time nonlinear systems.
    Wen G; Xu D; Han X
    Chaos; 2002 Jun; 12(2):350-355. PubMed ID: 12779564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of degenerate Hopf bifurcations in three-dimensional maps.
    Wen G; Xu D; Xie J
    Chaos; 2003 Jun; 13(2):486-94. PubMed ID: 12777111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifurcation structure of two coupled FHN neurons with delay.
    Farajzadeh Tehrani N; Razvan M
    Math Biosci; 2015 Dec; 270(Pt A):41-56. PubMed ID: 26476143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling.
    Burić N; Todorović D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066222. PubMed ID: 16241341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bifurcation of the branching of a cycle in n-parameter family of dynamic systems with cosymmetry.
    Kurakin LG; Yudovich VI
    Chaos; 1997 Sep; 7(3):376-386. PubMed ID: 12779665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bifurcations accompanying monotonic instability of an equilibrium of a cosymmetric dynamical system.
    Kurakin LG; Yudovich VI
    Chaos; 2000 Jun; 10(2):311-330. PubMed ID: 12779386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical analysis of subcritical Hopf bifurcations in the two-dimensional FitzHugh-Nagumo model.
    Sehgal S; Foulkes AJ
    Phys Rev E; 2020 Jul; 102(1-1):012212. PubMed ID: 32795073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propagating fronts, chaos and multistability in a cell replication model.
    Crabb R; Mackey MC; Rey AD
    Chaos; 1996 Sep; 6(3):477-492. PubMed ID: 12780278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A normal form for excitable media.
    Gottwald GA; Kramer L
    Chaos; 2006 Mar; 16(1):013122. PubMed ID: 16599753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of Lagrangian chaos on locking bifurcations in shear flows.
    Finn JM
    Chaos; 2002 Jun; 12(2):508-517. PubMed ID: 12779581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infinite period and Hopf bifurcations for the pH-regulated oscillations in a semibatch reactor (H(2)O(2)-Cu(2+)-S(2)O(2-) (3)-NaOH system).
    Strizhak PE; Pojman JA
    Chaos; 1996 Sep; 6(3):461-465. PubMed ID: 12780276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic behaviors of the FitzHugh-Nagumo neuron model with state-dependent impulsive effects.
    He Z; Li C; Chen L; Cao Z
    Neural Netw; 2020 Jan; 121():497-511. PubMed ID: 31655446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis.
    Bauer S; Röder G; Bär M
    Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Symmetric bursting behaviors in the generalized FitzHugh-Nagumo model.
    Abbasian AH; Fallah H; Razvan MR
    Biol Cybern; 2013 Aug; 107(4):465-76. PubMed ID: 23801268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks.
    Wang Z; Campbell SA
    Chaos; 2017 Nov; 27(11):114316. PubMed ID: 29195320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.