These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 12779691)

  • 1. On a simple recursive control algorithm automated and applied to an electrochemical experiment.
    Rhode MA; Rollins RW; Dewald HD
    Chaos; 1997 Dec; 7(4):653-663. PubMed ID: 12779691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Easy-to-implement method to target nonlinear systems.
    Baptista MS; Caldas IL
    Chaos; 1998 Mar; 8(1):290-299. PubMed ID: 12779732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of chaos in excitable physiological systems: A geometric analysis.
    Christini DJ; Collins JJ
    Chaos; 1997 Dec; 7(4):544-549. PubMed ID: 12779680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An expansion of system with time delayed feedback control into spatio-temporal state space.
    Hikihara T; Ueda Y
    Chaos; 1999 Dec; 9(4):887-892. PubMed ID: 12779885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the use of stabilizing transformations for detecting unstable periodic orbits in high-dimensional flows.
    Crofts JJ; Davidchack RL
    Chaos; 2009 Sep; 19(3):033138. PubMed ID: 19792018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive strategies for recognition, noise filtering, control, synchronization and targeting of chaos.
    Arecchi FT; Boccaletti S
    Chaos; 1997 Dec; 7(4):621-634. PubMed ID: 12779688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cycling chaotic attractors in two models for dynamics with invariant subspaces.
    Ashwin P; Rucklidge AM; Sturman R
    Chaos; 2004 Sep; 14(3):571-82. PubMed ID: 15446967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of long-period orbits and arbitrary trajectories in chaotic systems using dynamic limiting.
    Corron NJ; Pethel SD
    Chaos; 2002 Mar; 12(1):1-7. PubMed ID: 12779526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normally attracting manifolds and periodic behavior in one-dimensional and two-dimensional coupled map lattices.
    Giberti C; Vernia C
    Chaos; 1994 Dec; 4(4):651-663. PubMed ID: 12780142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling chaos in a fast diode resonator using extended time-delay autosynchronization: Experimental observations and theoretical analysis.
    Sukow DW; Bleich ME; Gauthier DJ; Socolar JE
    Chaos; 1997 Dec; 7(4):560-576. PubMed ID: 12779682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attractor switching by neural control of chaotic neurodynamics.
    Pasemann F; Stollenwerk N
    Network; 1998 Nov; 9(4):549-61. PubMed ID: 10221579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal chaos control through reinforcement learning.
    Gadaleta S; Dangelmayr G
    Chaos; 1999 Sep; 9(3):775-788. PubMed ID: 12779873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking unstable steady states and periodic orbits of oscillatory and chaotic electrochemical systems using delayed feedback control.
    Kiss IZ; Kazsu Z; Gáspár V
    Chaos; 2006 Sep; 16(3):033109. PubMed ID: 17014214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unstable periodic orbits and templates of the Rossler system: Toward a systematic topological characterization.
    Letellier C; Dutertre P; Maheu B
    Chaos; 1995 Mar; 5(1):271-282. PubMed ID: 12780181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fixed-point densities for a quasiperiodic kicked-oscillator map.
    Lowenstein JH
    Chaos; 1995 Sep; 5(3):566-577. PubMed ID: 12780212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits.
    Gonchenko SV; Shil'nikov LP; Turaev DV
    Chaos; 1996 Mar; 6(1):15-31. PubMed ID: 12780232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manifold structures of unstable periodic orbits and the appearance of periodic windows in chaotic systems.
    Kobayashi MU; Saiki Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022904. PubMed ID: 25353542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilizing unstable steady states using extended time-delay autosynchronization.
    Chang A; Bienfang JC; Hall GM; Gardner JR; Gauthier DJ
    Chaos; 1998 Dec; 8(4):782-790. PubMed ID: 12779784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaos control by using Motor Maps.
    Arena P; Fortuna L; Frasca M
    Chaos; 2002 Sep; 12(3):559-573. PubMed ID: 12779586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase space structure and chaotic scattering in near-integrable systems.
    Koch BP; Bruhn B
    Chaos; 1993 Oct; 3(4):443-457. PubMed ID: 12780051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.