These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 12779738)

  • 1. Variational principles for thermostatted systems.
    Choquard P
    Chaos; 1998 Jun; 8(2):350-356. PubMed ID: 12779738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermostats: Analysis and application.
    Morriss GP; Dettmann CP
    Chaos; 1998 Jun; 8(2):321-336. PubMed ID: 12779736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Character of fluctuations in deterministically thermostatted nonequilibrium systems.
    Kumicak J
    Chaos; 2001 Sep; 11(3):624-631. PubMed ID: 12779501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time reversible and symplectic integrators for molecular dynamics simulations of rigid molecules.
    Kamberaj H; Low RJ; Neal MP
    J Chem Phys; 2005 Jun; 122(22):224114. PubMed ID: 15974658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The canonical ensemble via symplectic integrators using Nosé and Nosé-Poincaré chains.
    Leimkuhler BJ; Sweet CR
    J Chem Phys; 2004 Jul; 121(1):108-16. PubMed ID: 15260527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaos and irreversibility in simple model systems.
    Hoover WG; Posch HA
    Chaos; 1998 Jun; 8(2):366-373. PubMed ID: 12779740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-Hamiltonian commutators in quantum mechanics.
    Sergi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066125. PubMed ID: 16486028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symmetries and regular behavior of Hamiltonian systems.
    Kozlov VV
    Chaos; 1996 Mar; 6(1):1-5. PubMed ID: 12780230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible maps in two-degrees of freedom Hamiltonian systems.
    Zare K; Tanikawa K
    Chaos; 2002 Sep; 12(3):699-705. PubMed ID: 12779598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonequilibrium thermodynamics and Nose-Hoover dynamics.
    Esposito M; Monnai T
    J Phys Chem B; 2011 May; 115(18):5144-7. PubMed ID: 21053926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Note on phase space contraction and entropy production in thermostatted Hamiltonian systems.
    Cohen EG; Rondoni L
    Chaos; 1998 Jun; 8(2):357-365. PubMed ID: 12779739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible measure-preserving integrators for non-Hamiltonian systems.
    Ezra GS
    J Chem Phys; 2006 Jul; 125(3):34104. PubMed ID: 16863341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Jarzynski identity derived from general Hamiltonian or non-Hamiltonian dynamics reproducing NVT or NPT ensembles.
    Cuendet MA
    J Chem Phys; 2006 Oct; 125(14):144109. PubMed ID: 17042581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized dynamical thermostating technique.
    Laird BB; Leimkuhler BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016704. PubMed ID: 12935284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Projection formalism for constrained dynamical systems: from Newtonian to Hamiltonian mechanics.
    Kneller GR
    J Chem Phys; 2007 Oct; 127(16):164114. PubMed ID: 17979326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hamiltonian dynamics of thermostated systems: two-temperature heat-conducting phi4 chains.
    Hoover WG; Hoover CG
    J Chem Phys; 2007 Apr; 126(16):164113. PubMed ID: 17477595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscopic reversibility and heat for thermostatted systems.
    Monnai T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042107. PubMed ID: 23679373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explicit symplectic integrators of molecular dynamics algorithms for rigid-body molecules in the canonical, isobaric-isothermal, and related ensembles.
    Okumura H; Itoh SG; Okamoto Y
    J Chem Phys; 2007 Feb; 126(8):084103. PubMed ID: 17343436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovering the Crooks equation for dynamical systems in the isothermal-isobaric ensemble: a strategy based on the equations of motion.
    Chelli R; Marsili S; Barducci A; Procacci P
    J Chem Phys; 2007 Jan; 126(4):044502. PubMed ID: 17286482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A proof of Jarzynski's nonequilibrium work theorem for dynamical systems that conserve the canonical distribution.
    Schöll-Paschinger E; Dellago C
    J Chem Phys; 2006 Aug; 125(5):054105. PubMed ID: 16942201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.