These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Entropy balance, time reversibility, and mass transport in dynamical systems. Breymann W; Tel T; Vollmer J Chaos; 1998 Jun; 8(2):396-408. PubMed ID: 12779744 [TBL] [Abstract][Full Text] [Related]
6. Theory and examples of the inverse Frobenius-Perron problem for complete chaotic maps. Pingel D; Schmelcher P; Diakonos FK Chaos; 1999 Jun; 9(2):357-366. PubMed ID: 12779834 [TBL] [Abstract][Full Text] [Related]
7. Exploring invariant sets and invariant measures. Dellnitz M; Hohmann A; Junge O; Rumpf M Chaos; 1997 Jun; 7(2):221-228. PubMed ID: 12779650 [TBL] [Abstract][Full Text] [Related]
8. Unstable evolution of pointwise trajectory solutions to chaotic maps. Fox RF Chaos; 1995 Dec; 5(4):619-633. PubMed ID: 12780218 [TBL] [Abstract][Full Text] [Related]
9. Statistical properties of actions of periodic orbits. Sano MM Chaos; 2000 Mar; 10(1):195-210. PubMed ID: 12779375 [TBL] [Abstract][Full Text] [Related]
10. Probabilistic and thermodynamic aspects of dynamical systems. Nicolis G; Daems D Chaos; 1998 Jun; 8(2):311-320. PubMed ID: 12779735 [TBL] [Abstract][Full Text] [Related]
11. Transfer entropy computation using the Perron-Frobenius operator. Diego D; Haaga KA; Hannisdal B Phys Rev E; 2019 Apr; 99(4-1):042212. PubMed ID: 31108690 [TBL] [Abstract][Full Text] [Related]
12. Spectral analysis and an area-preserving extension of a piecewise linear intermittent map. Miyaguchi T; Aizawa Y Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066201. PubMed ID: 17677334 [TBL] [Abstract][Full Text] [Related]
13. Numerical analysis of spectra of the Frobenius-Perron operator of a noisy one-dimensional mapping: toward a theory of stochastic bifurcations. Inoue J; Doi S; Kumagai S Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056219. PubMed ID: 11736066 [TBL] [Abstract][Full Text] [Related]
14. An analytical construction of the SRB measures for Baker-type maps. Tasaki S; Gilbert T; Dorfman JR Chaos; 1998 Jun; 8(2):424-443. PubMed ID: 12779746 [TBL] [Abstract][Full Text] [Related]
15. Gibbs entropy and dynamics. Piftankin G; Treschev D Chaos; 2008 Jun; 18(2):023116. PubMed ID: 18601483 [TBL] [Abstract][Full Text] [Related]
16. Lie Group Statistics and Lie Group Machine Learning Based on Souriau Lie Groups Thermodynamics & Koszul-Souriau-Fisher Metric: New Entropy Definition as Generalized Casimir Invariant Function in Coadjoint Representation. Barbaresco F Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286414 [TBL] [Abstract][Full Text] [Related]
17. Solutions of the Multivariate Inverse Frobenius-Perron Problem. Fox C; Hsiao LJ; Lee JK Entropy (Basel); 2021 Jun; 23(7):. PubMed ID: 34208901 [TBL] [Abstract][Full Text] [Related]
19. Chaotic maps derived from trajectory data. Boyarsky A; Gora P Chaos; 2002 Mar; 12(1):42-48. PubMed ID: 12779531 [TBL] [Abstract][Full Text] [Related]
20. The infinitesimal operator for the semigroup of the Frobenius-Perron operator from image sequence data: vector fields and transport barriers from movies. Santitissadeekorn N; Bollt EM Chaos; 2007 Jun; 17(2):023126. PubMed ID: 17614680 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]