These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 12779792)

  • 1. Counting unstable periodic orbits in noisy chaotic systems: A scaling relation connecting experiment with theory.
    Pei X; Dolan K; Moss F; Lai YC
    Chaos; 1998 Dec; 8(4):853-860. PubMed ID: 12779792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal chaos control through reinforcement learning.
    Gadaleta S; Dangelmayr G
    Chaos; 1999 Sep; 9(3):775-788. PubMed ID: 12779873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periodic orbit analysis at the onset of the unstable dimension variability and at the blowout bifurcation.
    Pereira RF; de S Pinto SE; Viana RL; Lopes SR; Grebogi C
    Chaos; 2007 Jun; 17(2):023131. PubMed ID: 17614685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unstable periodic orbits and noise in chaos computing.
    Kia B; Dari A; Ditto WL; Spano ML
    Chaos; 2011 Dec; 21(4):047520. PubMed ID: 22225394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recurrence plots and unstable periodic orbits.
    Bradley E; Mantilla R
    Chaos; 2002 Sep; 12(3):596-600. PubMed ID: 12779588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On a simple recursive control algorithm automated and applied to an electrochemical experiment.
    Rhode MA; Rollins RW; Dewald HD
    Chaos; 1997 Dec; 7(4):653-663. PubMed ID: 12779691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secondary homoclinic bifurcation theorems.
    Rom-Kedar V
    Chaos; 1995 Jun; 5(2):385-401. PubMed ID: 12780192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive strategies for recognition, noise filtering, control, synchronization and targeting of chaos.
    Arecchi FT; Boccaletti S
    Chaos; 1997 Dec; 7(4):621-634. PubMed ID: 12779688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical characteristics, circulation regimes and unstable periodic orbits of a barotropic atmospheric model.
    Gritsun A
    Philos Trans A Math Phys Eng Sci; 2013 May; 371(1991):20120336. PubMed ID: 23588051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cycles homoclinic to chaotic sets; robustness and resonance.
    Ashwin P
    Chaos; 1997 Jun; 7(2):207-220. PubMed ID: 12779649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of noisy chaotic motion in a system with nonlinear excitation and restoring forces.
    King PE; Yim SC
    Chaos; 1997 Jun; 7(2):290-300. PubMed ID: 12779657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unstable periodic orbits and the natural measure of nonhyperbolic chaotic saddles.
    Dhamala M; Lai YC
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):6176-9. PubMed ID: 11970527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient noncausal noise reduction for deterministic time series.
    Brocker J; Parlitz U
    Chaos; 2001 Jun; 11(2):319-326. PubMed ID: 12779465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of long-period orbits and arbitrary trajectories in chaotic systems using dynamic limiting.
    Corron NJ; Pethel SD
    Chaos; 2002 Mar; 12(1):1-7. PubMed ID: 12779526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems.
    Lai YC; Liu Z; Billings L; Schwartz IB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-averaged properties of unstable periodic orbits and chaotic orbits in ordinary differential equation systems.
    Saiki Y; Yamada M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):015201. PubMed ID: 19257096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase resetting effects for robust cycles between chaotic sets.
    Ashwin P; Field M; Rucklidge AM; Sturman R
    Chaos; 2003 Sep; 13(3):973-81. PubMed ID: 12946190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits.
    Gonchenko SV; Shil'nikov LP; Turaev DV
    Chaos; 1996 Mar; 6(1):15-31. PubMed ID: 12780232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Easy-to-implement method to target nonlinear systems.
    Baptista MS; Caldas IL
    Chaos; 1998 Mar; 8(1):290-299. PubMed ID: 12779732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cycling chaotic attractors in two models for dynamics with invariant subspaces.
    Ashwin P; Rucklidge AM; Sturman R
    Chaos; 2004 Sep; 14(3):571-82. PubMed ID: 15446967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.