These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 12779834)
1. Theory and examples of the inverse Frobenius-Perron problem for complete chaotic maps. Pingel D; Schmelcher P; Diakonos FK Chaos; 1999 Jun; 9(2):357-366. PubMed ID: 12779834 [TBL] [Abstract][Full Text] [Related]
2. Statistical properties of chaos demonstrated in a class of one-dimensional maps. Csordas A; Gyorgyi G; Szepfalusy P; Tel T Chaos; 1993 Jan; 3(1):31-49. PubMed ID: 12780013 [TBL] [Abstract][Full Text] [Related]
4. Unstable evolution of pointwise trajectory solutions to chaotic maps. Fox RF Chaos; 1995 Dec; 5(4):619-633. PubMed ID: 12780218 [TBL] [Abstract][Full Text] [Related]
5. Exploring invariant sets and invariant measures. Dellnitz M; Hohmann A; Junge O; Rumpf M Chaos; 1997 Jun; 7(2):221-228. PubMed ID: 12779650 [TBL] [Abstract][Full Text] [Related]
6. A matrix-based approach to solving the inverse Frobenius-Perron problem using sequences of density functions of stochastically perturbed dynamical systems. Nie X; Coca D Commun Nonlinear Sci Numer Simul; 2018 Jan; 54():248-266. PubMed ID: 29299016 [TBL] [Abstract][Full Text] [Related]
7. Turning point properties as a method for the characterization of the ergodic dynamics of one-dimensional iterative maps. Diakonos FK; Schmelcher P Chaos; 1997 Jun; 7(2):239-244. PubMed ID: 12779652 [TBL] [Abstract][Full Text] [Related]
8. Solutions of the Multivariate Inverse Frobenius-Perron Problem. Fox C; Hsiao LJ; Lee JK Entropy (Basel); 2021 Jun; 23(7):. PubMed ID: 34208901 [TBL] [Abstract][Full Text] [Related]
9. On a general concept of multifractality: Multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity. Barreira L; Pesin Y; Schmeling J Chaos; 1997 Mar; 7(1):27-38. PubMed ID: 12779635 [TBL] [Abstract][Full Text] [Related]
11. Chaotic and fractal properties of deterministic diffusion-reaction processes. Gaspard P; Klages R Chaos; 1998 Jun; 8(2):409-423. PubMed ID: 12779745 [TBL] [Abstract][Full Text] [Related]
12. Leading Pollicott-Ruelle resonances for chaotic area-preserving maps. Venegeroles R Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):027201. PubMed ID: 18352159 [TBL] [Abstract][Full Text] [Related]
13. A note on chaotic unimodal maps and applications. Zhou CT; He XT; Yu MY; Chew LY; Wang XG Chaos; 2006 Sep; 16(3):033113. PubMed ID: 17014218 [TBL] [Abstract][Full Text] [Related]
14. Construction of the Jordan basis for the Baker map. Fox RF Chaos; 1997 Jun; 7(2):254-269. PubMed ID: 12779654 [TBL] [Abstract][Full Text] [Related]
15. Chaotic maps derived from trajectory data. Boyarsky A; Gora P Chaos; 2002 Mar; 12(1):42-48. PubMed ID: 12779531 [TBL] [Abstract][Full Text] [Related]
16. Alternating chaotic and periodic dynamics in Chern-Simons-Higgs theory with scalar magnetic interaction. Escalona J; Antillon A; Torres M; Jiang Y; Parmananda P Chaos; 2000 Jun; 10(2):337-343. PubMed ID: 12779388 [TBL] [Abstract][Full Text] [Related]
17. Entropy evolution for the Baker map. Fox RF Chaos; 1998 Jun; 8(2):462-465. PubMed ID: 12779749 [TBL] [Abstract][Full Text] [Related]
18. Scarring in classical chaotic dynamics with noise. Lippolis D; Shudo A; Yoshida K; Yoshino H Phys Rev E; 2021 May; 103(5):L050202. PubMed ID: 34134294 [TBL] [Abstract][Full Text] [Related]
19. Chaotic synchronizations of spatially extended systems as nonequilibrium phase transitions. Cencini M; Tessone CJ; Torcini A Chaos; 2008 Sep; 18(3):037125. PubMed ID: 19045499 [TBL] [Abstract][Full Text] [Related]
20. Probabilistic and thermodynamic aspects of dynamical systems. Nicolis G; Daems D Chaos; 1998 Jun; 8(2):311-320. PubMed ID: 12779735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]