These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 12779841)

  • 1. Using multiple attractor chaotic systems for communication.
    Carroll TL; Pecora LM
    Chaos; 1999 Jun; 9(2):445-451. PubMed ID: 12779841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new chaotic communication scheme based on adaptive synchronization.
    Xiang-Jun W
    Chaos; 2006 Dec; 16(4):043118. PubMed ID: 17199396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive synchronization of a switching system and its applications to secure communications.
    Xia W; Cao J
    Chaos; 2008 Jun; 18(2):023128. PubMed ID: 18601495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized projective synchronization of chaotic systems with unknown dead-zone input: observer-based approach.
    Hung YC; Hwang CC; Liao TL; Yan JJ
    Chaos; 2006 Sep; 16(3):033125. PubMed ID: 17014230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized synchronization of chaotic systems: an auxiliary system approach via matrix measure.
    He W; Cao J
    Chaos; 2009 Mar; 19(1):013118. PubMed ID: 19334982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifolded torus chaotic attractors: design and implementation.
    Yu S; Lu J; Chen G
    Chaos; 2007 Mar; 17(1):013118. PubMed ID: 17411254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise-resistant chaotic maps.
    Carroll TL
    Chaos; 2002 Jun; 12(2):275-278. PubMed ID: 12779555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaotic signal detection and estimation based on attractor sets: applications to secure communications.
    Rohde GK; Nichols JM; Bucholtz F
    Chaos; 2008 Mar; 18(1):013114. PubMed ID: 18377065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital signal transmission with cascaded heterogeneous chaotic systems.
    Murali K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016217. PubMed ID: 11304345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Communicating with noise: How chaos and noise combine to generate secure encryption keys.
    Minai AA; Pandian TD
    Chaos; 1998 Sep; 8(3):621-628. PubMed ID: 12779766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics and computation of continuous attractors.
    Wu S; Hamaguchi K; Amari S
    Neural Comput; 2008 Apr; 20(4):994-1025. PubMed ID: 18085986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network capacity analysis for latent attractor computation.
    Doboli S; Minai AA
    Network; 2003 May; 14(2):273-302. PubMed ID: 12790185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of noise on the neutral direction of chaotic attractor.
    Lai YC; Liu Z
    Chaos; 2004 Mar; 14(1):189-92. PubMed ID: 15003060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ergodic chaos-based communication schemes.
    Leung H; Yu H; Murali K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036203. PubMed ID: 12366220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chaotic systems that are robust to added noise.
    Carroll TL
    Chaos; 2005 Mar; 15(1):13901. PubMed ID: 15836275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cycling chaotic attractors in two models for dynamics with invariant subspaces.
    Ashwin P; Rucklidge AM; Sturman R
    Chaos; 2004 Sep; 14(3):571-82. PubMed ID: 15446967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaotic digital communication by encoding initial conditions.
    Xiaofeng G; Xingang W; Meng Z; Lai CH
    Chaos; 2004 Jun; 14(2):358-63. PubMed ID: 15189063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A secure communication scheme based on the phase synchronization of chaotic systems.
    Chen JY; Wong KW; Cheng LM; Shuai JW
    Chaos; 2003 Jun; 13(2):508-14. PubMed ID: 12777114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. n-scroll chaotic attractors from a first-order time-delay differential equation.
    Yalçin ME; Ozoguz S
    Chaos; 2007 Sep; 17(3):033112. PubMed ID: 17902994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting variation in chaotic attractors.
    Carroll TL
    Chaos; 2011 Jun; 21(2):023128. PubMed ID: 21721770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.