These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 12779842)

  • 1. Scale and space localization in the Kuramoto-Sivashinsky equation.
    Wittenberg RW; Holmes P
    Chaos; 1999 Jun; 9(2):452-465. PubMed ID: 12779842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaotic behavior in transverse-mode laser dynamics.
    Kaige W; Abraham NB; Albano AM
    Chaos; 1993 Jul; 3(3):287-294. PubMed ID: 12780037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of chaotic saddles in high-dimensional dynamical systems: the Kuramoto-Sivashinsky equation.
    Rempel EL; Chian AC; Macau EE; Rosa RR
    Chaos; 2004 Sep; 14(3):545-56. PubMed ID: 15446964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaotic saddles at the onset of intermittent spatiotemporal chaos.
    Rempel EL; Chian AC; Miranda RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056217. PubMed ID: 18233749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in-depth numerical study of the two-dimensional Kuramoto-Sivashinsky equation.
    Kalogirou A; Keaveny EE; Papageorgiou DT
    Proc Math Phys Eng Sci; 2015 Jul; 471(2179):20140932. PubMed ID: 26345218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic phase separation: from coarsening to turbulence via structure formation.
    Golovin AA; Pismen LM
    Chaos; 2004 Sep; 14(3):845-54. PubMed ID: 15446995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hopping behavior in the Kuramoto-Sivashinsky equation.
    Blomgren P; Gasner S; Palacios A
    Chaos; 2005 Mar; 15(1):13706. PubMed ID: 15836274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear dynamics of a dispersive anisotropic Kuramoto-Sivashinsky equation in two space dimensions.
    Tomlin RJ; Kalogirou A; Papageorgiou DT
    Proc Math Phys Eng Sci; 2018 Mar; 474(2211):20170687. PubMed ID: 29662339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermittency induced by attractor-merging crisis in the Kuramoto-Sivashinsky equation.
    Rempel EL; Chian AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016203. PubMed ID: 15697694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaotic synchronization of coupled electron-wave systems with backward waves.
    Hramov AE; Koronovskii AA; Popov PV; Rempen IS
    Chaos; 2005 Mar; 15(1):13705. PubMed ID: 15836273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propagation of nonlinear acoustic plane waves in an elastic gas-filled tube.
    Bednarik M; Cervenka M
    J Acoust Soc Am; 2009 Oct; 126(4):1681-9. PubMed ID: 19813784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal dynamics in the coherence collapsed regime of semiconductor lasers with optical feedback.
    Masoller C
    Chaos; 1997 Sep; 7(3):455-462. PubMed ID: 12779673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unstable recurrent patterns in Kuramoto-Sivashinsky dynamics.
    Lan Y; Cvitanović P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026208. PubMed ID: 18850922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-out intermittency in partial differential equation and ordinary differential equation models.
    Covas E; Tavakol R; Ashwin P; Tworkowski A; Brooke JM
    Chaos; 2001 Jun; 11(2):404-409. PubMed ID: 12779475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wave trains in a model of gypsy moth population dynamics.
    Wilder JW; Vasquez DA; Christie I; Colbert JJ
    Chaos; 1995 Dec; 5(4):700-706. PubMed ID: 12780228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaotic dynamics of sea clutter.
    Haykin S; Puthusserypady S
    Chaos; 1997 Dec; 7(4):777-802. PubMed ID: 12779703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex spiral wave dynamics in a spatially distributed ionic model of cardiac electrical activity.
    Courtemanche M
    Chaos; 1996 Dec; 6(4):579-600. PubMed ID: 12780289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Damping filter method for obtaining spatially localized solutions.
    Teramura T; Toh S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052910. PubMed ID: 25353864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basis set study of classical rotor lattice dynamics.
    Witkoskie JB; Wu J; Cao J
    J Chem Phys; 2004 Mar; 120(12):5695-708. PubMed ID: 15267447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of an electrostatically modified Kuramoto-Sivashinsky-Korteweg-de Vries equation arising in falling film flows.
    Tseluiko D; Papageorgiou DT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016322. PubMed ID: 20866740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.