These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 12779867)
1. From scattering singularities to the partition of a horseshoe. Lipp C; Jung C Chaos; 1999 Sep; 9(3):706-714. PubMed ID: 12779867 [TBL] [Abstract][Full Text] [Related]
2. Construction of a natural partition of incomplete horseshoes. Jung C; Emmanouilidou A Chaos; 2005 Jun; 15(2):23101. PubMed ID: 16035877 [TBL] [Abstract][Full Text] [Related]
3. Partitioning the phase space in a natural way for scattering systems. Emmanouilidou A; Jung C Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016219. PubMed ID: 16486270 [TBL] [Abstract][Full Text] [Related]
4. How does a choice of Markov partition affect the resultant symbolic dynamics? Teramoto H; Komatsuzaki T Chaos; 2010 Sep; 20(3):037113. PubMed ID: 20887079 [TBL] [Abstract][Full Text] [Related]
5. Classical scattering for a driven inverted Gaussian potential in terms of the chaotic invariant set. Emmanouilidou A; Jung C; Reichl LE Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046207. PubMed ID: 14683035 [TBL] [Abstract][Full Text] [Related]
6. Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits. Gonchenko SV; Shil'nikov LP; Turaev DV Chaos; 1996 Mar; 6(1):15-31. PubMed ID: 12780232 [TBL] [Abstract][Full Text] [Related]
8. Order and chaos in the planar isosceles three-body problem. Zare K; Chesley S Chaos; 1998 Jun; 8(2):475-494. PubMed ID: 12779751 [TBL] [Abstract][Full Text] [Related]
9. Reversible maps in two-degrees of freedom Hamiltonian systems. Zare K; Tanikawa K Chaos; 2002 Sep; 12(3):699-705. PubMed ID: 12779598 [TBL] [Abstract][Full Text] [Related]
10. Phase space structure and chaotic scattering in near-integrable systems. Koch BP; Bruhn B Chaos; 1993 Oct; 3(4):443-457. PubMed ID: 12780051 [TBL] [Abstract][Full Text] [Related]
11. Symbolic partition in chaotic maps. Chai M; Lan Y Chaos; 2021 Mar; 31(3):033144. PubMed ID: 33810756 [TBL] [Abstract][Full Text] [Related]
12. One-dimensional three-body problem via symbolic dynamics. Tanikawa K; Mikkola S Chaos; 2000 Sep; 10(3):649-657. PubMed ID: 12779414 [TBL] [Abstract][Full Text] [Related]
13. Chaos in the one-dimensional gravitational three-body problem. Hietarinta J; Mikkola S Chaos; 1993 Apr; 3(2):183-203. PubMed ID: 12780027 [TBL] [Abstract][Full Text] [Related]
14. Truncated horseshoes and formal languages in chaotic scattering. Troll G Chaos; 1993 Oct; 3(4):459-473. PubMed ID: 12780052 [TBL] [Abstract][Full Text] [Related]
15. Symbolic synchronization and the detection of global properties of coupled dynamics from local information. Jalan S; Jost J; Atay FM Chaos; 2006 Sep; 16(3):033124. PubMed ID: 17014229 [TBL] [Abstract][Full Text] [Related]
16. Stability and bifurcations of a stationary state for an impact oscillator. Aidanpaa JO; Shen HH; Gupta RB Chaos; 1994 Dec; 4(4):621-630. PubMed ID: 12780139 [TBL] [Abstract][Full Text] [Related]
17. A simple model of chaotic advection and scattering. Stolovitzky G; Kaper TJ; Sirovich L Chaos; 1995 Dec; 5(4):671-686. PubMed ID: 12780224 [TBL] [Abstract][Full Text] [Related]