These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 12779878)

  • 1. Global analysis of periodic orbit bifurcations in coupled Morse oscillator systems: time-reversal symmetry, permutational representations and codimension-2 collisions.
    Tsuchiya M; Ezra GS
    Chaos; 1999 Dec; 9(4):819-840. PubMed ID: 12779878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary homoclinic bifurcation theorems.
    Rom-Kedar V
    Chaos; 1995 Jun; 5(2):385-401. PubMed ID: 12780192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normally attracting manifolds and periodic behavior in one-dimensional and two-dimensional coupled map lattices.
    Giberti C; Vernia C
    Chaos; 1994 Dec; 4(4):651-663. PubMed ID: 12780142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global bifurcations in a laser with injected signal: Beyond Adler's approximation.
    Zimmermann MG; Natiello MA; Solari HG
    Chaos; 2001 Sep; 11(3):500-513. PubMed ID: 12779488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bifurcations in biparametric quadratic potentials. II.
    Lanchares V; Elipe A
    Chaos; 1995 Sep; 5(3):531-535. PubMed ID: 12780209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of periodic orbits in the four- and five-body problems.
    Broucke RA
    Ann N Y Acad Sci; 2004 May; 1017():408-21. PubMed ID: 15220159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bifurcations in biparametric quadratic potentials.
    Lanchares V; Elipe A
    Chaos; 1995 Jun; 5(2):367-373. PubMed ID: 12780190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periodic orbits in tall laterally heated rectangular cavities.
    Net M; Sánchez Umbría J
    Phys Rev E; 2017 Feb; 95(2-1):023102. PubMed ID: 28297977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase space structure and chaotic scattering in near-integrable systems.
    Koch BP; Bruhn B
    Chaos; 1993 Oct; 3(4):443-457. PubMed ID: 12780051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global bifurcations at the onset of pulse self-replication.
    Yue B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056209. PubMed ID: 18233741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical properties of actions of periodic orbits.
    Sano MM
    Chaos; 2000 Mar; 10(1):195-210. PubMed ID: 12779375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phase-modulated logistic map.
    Nandi A; Dutta D; Bhattacharjee JK; Ramaswamy R
    Chaos; 2005 Jun; 15(2):23107. PubMed ID: 16035883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Periodic orbits of nonscaling Hamiltonian systems from quantum mechanics.
    Baranger M; Haggerty MR; Lauritzen B; Meredith DC; Provost D
    Chaos; 1995 Mar; 5(1):261-270. PubMed ID: 12780180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaotic patterns in a coupled oscillator-excitator biochemical cell system.
    Schreiber I; Hasal P; Marek M
    Chaos; 1999 Mar; 9(1):43-54. PubMed ID: 12779800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-dimensional three-body problem via symbolic dynamics.
    Tanikawa K; Mikkola S
    Chaos; 2000 Sep; 10(3):649-657. PubMed ID: 12779414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A periodic orbit bifurcation analysis of vibrationally excited isotopologues of sulfur dioxide and water molecules: symmetry breaking substitutions.
    Mauguiere F; Rey M; Tyuterev V; Suarez J; Farantos SC
    J Phys Chem A; 2010 Sep; 114(36):9836-47. PubMed ID: 20825241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homoclinic-doubling and homoclinic-gluing bifurcations in the Takens-Bogdanov normal form with
    Qin BW; Chung KW; Rodríguez-Luis AJ; Belhaq M
    Chaos; 2018 Sep; 28(9):093107. PubMed ID: 30278647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bifurcations analysis of oscillating hypercycles.
    Guillamon A; Fontich E; Sardanyés J
    J Theor Biol; 2015 Dec; 387():23-30. PubMed ID: 26431772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unstable periodic orbits and templates of the Rossler system: Toward a systematic topological characterization.
    Letellier C; Dutertre P; Maheu B
    Chaos; 1995 Mar; 5(1):271-282. PubMed ID: 12780181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex dynamics in a simple model of pulsations for super-asymptotic giant branch stars.
    Munteanu A; Garcia-Berro E; Jose J; Petrisor E
    Chaos; 2002 Jun; 12(2):332-343. PubMed ID: 12779562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.