These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 12779881)

  • 1. Calculations of periodic orbits: The monodromy method and application to regularized systems.
    Simonovic NS
    Chaos; 1999 Dec; 9(4):854-864. PubMed ID: 12779881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical properties of actions of periodic orbits.
    Sano MM
    Chaos; 2000 Mar; 10(1):195-210. PubMed ID: 12779375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On chaotic dynamics in "pseudobilliard" Hamiltonian systems with two degrees of freedom.
    Eleonsky VM; Korolev VG; Kulagin NE
    Chaos; 1997 Dec; 7(4):710-730. PubMed ID: 12779697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convergence of Hamiltonian systems to billiards.
    Collas P; Klein D; Schwebler HP
    Chaos; 1998 Jun; 8(2):466-474. PubMed ID: 12779750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculations of periodic trajectories for the Henon-Heiles Hamiltonian using the monodromy method.
    Davies KT; Huston TE; Baranger M
    Chaos; 1992 Apr; 2(2):215-224. PubMed ID: 12779967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics.
    Koon WS; Lo MW; Marsden JE; Ross SD
    Chaos; 2000 Jun; 10(2):427-469. PubMed ID: 12779398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of long-period orbits and arbitrary trajectories in chaotic systems using dynamic limiting.
    Corron NJ; Pethel SD
    Chaos; 2002 Mar; 12(1):1-7. PubMed ID: 12779526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periodic orbits of nonscaling Hamiltonian systems from quantum mechanics.
    Baranger M; Haggerty MR; Lauritzen B; Meredith DC; Provost D
    Chaos; 1995 Mar; 5(1):261-270. PubMed ID: 12780180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum level structures at a Fermi resonance with angular momentum: classical periodic orbits, catastrophe maps and quantum monodromy.
    Cooper CD; Child MS
    Phys Chem Chem Phys; 2005 Jul; 7(14):2731-9. PubMed ID: 16189587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finding periodic orbits of higher-dimensional flows by including tangential components of trajectory motion.
    Koh YW; Takatsuka K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066205. PubMed ID: 18233902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal chaos control through reinforcement learning.
    Gadaleta S; Dangelmayr G
    Chaos; 1999 Sep; 9(3):775-788. PubMed ID: 12779873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the absence of stable periodic orbits in domains of separatrix crossings in nonsymmetric slow-fast Hamiltonian systems.
    Neishtadt A; Vasiliev A
    Chaos; 2007 Dec; 17(4):043104. PubMed ID: 18163768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized entropies of chaotic maps and flows: A unified approach.
    Badii R
    Chaos; 1997 Dec; 7(4):694-700. PubMed ID: 12779695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting in Hamiltonian systems that have mixed regular/chaotic phase spaces.
    Schroer CG; Ott E
    Chaos; 1997 Dec; 7(4):512-519. PubMed ID: 12779678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Counting unstable periodic orbits in noisy chaotic systems: A scaling relation connecting experiment with theory.
    Pei X; Dolan K; Moss F; Lai YC
    Chaos; 1998 Dec; 8(4):853-860. PubMed ID: 12779792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cycling chaotic attractors in two models for dynamics with invariant subspaces.
    Ashwin P; Rucklidge AM; Sturman R
    Chaos; 2004 Sep; 14(3):571-82. PubMed ID: 15446967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow passage through a transcritical bifurcation for Hamiltonian systems and the change in action due to a nonhyperbolic homoclinic orbit.
    Haberman R
    Chaos; 2000 Sep; 10(3):641-648. PubMed ID: 12779413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On Jacobian matrices for flows.
    Doyon B; Dubé LJ
    Chaos; 2005 Mar; 15(1):13108. PubMed ID: 15836262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi-periodicity, global stability and scaling in a model of Hamiltonian round-off.
    Lowenstein J; Hatjispyros S; Vivaldi F
    Chaos; 1997 Mar; 7(1):49-66. PubMed ID: 12779637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On a simple recursive control algorithm automated and applied to an electrochemical experiment.
    Rhode MA; Rollins RW; Dewald HD
    Chaos; 1997 Dec; 7(4):653-663. PubMed ID: 12779691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.