These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 12779888)

  • 1. Chaotic mixing of granular material in slowly rotating containers as a discrete mapping.
    Elperin T; Vikhansky A
    Chaos; 1999 Dec; 9(4):910-915. PubMed ID: 12779888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaotic mixing of granular materials in two-dimensional tumbling mixers.
    Khakhar DV; McCarthy JJ; Gilchrist JF; Ottino JM
    Chaos; 1999 Mar; 9(1):195-205. PubMed ID: 12779813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chaotic granular mixing.
    Shinbrot T; Alexander A; Moakher M; Muzzio FJ
    Chaos; 1999 Sep; 9(3):611-620. PubMed ID: 12779856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable periodic motions in the problem on passage through a separatrix.
    Neishtadt AI; Sidorenko VV; Treschev DV
    Chaos; 1997 Mar; 7(1):2-11. PubMed ID: 12779632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaotic mixing via streamline jumping in quasi-two-dimensional tumbled granular flows.
    Christov IC; Ottino JM; Lueptow RM
    Chaos; 2010 Jun; 20(2):023102. PubMed ID: 20590298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separatrices splitting for Birkhoff's billiard in symmetric convex domain, closed to an ellipse.
    Tabanov MB
    Chaos; 1994 Dec; 4(4):595-606. PubMed ID: 12780137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open problems in active chaotic flows: Competition between chaos and order in granular materials.
    Ottino JM; Khakhar DV
    Chaos; 2002 Jun; 12(2):400-407. PubMed ID: 12779570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple model of chaotic advection and scattering.
    Stolovitzky G; Kaper TJ; Sirovich L
    Chaos; 1995 Dec; 5(4):671-686. PubMed ID: 12780224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convection in horizontally vibrated granular material.
    Medved M; Dawson D; Jaeger HM; Nagel SR
    Chaos; 1999 Sep; 9(3):691-696. PubMed ID: 12779865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaotic mixing induced transitions in reaction-diffusion systems.
    Neufeld Z; Haynes PH; Tel T
    Chaos; 2002 Jun; 12(2):426-438. PubMed ID: 12779573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finding finite-time invariant manifolds in two-dimensional velocity fields.
    Haller G
    Chaos; 2000 Mar; 10(1):99-108. PubMed ID: 12779366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling microflow and stirring around a microrotor in creeping flow using a quasi-steady-state analysis.
    Vuppu AK; Garcia AA; Saha SK; Phelan PE; Hayes MA; Calhoun R
    Lab Chip; 2004 Jun; 4(3):201-8. PubMed ID: 15159779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design criteria of a chemical reactor based on a chaotic flow.
    Tang XZ; Boozer AH
    Chaos; 1999 Mar; 9(1):183-194. PubMed ID: 12779812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient chaotic mixing during a baroclinic life cycle.
    Von Hardenberg J; Fraedrich K; Lunkeit F; Provenzale A
    Chaos; 2000 Mar; 10(1):122-134. PubMed ID: 12779368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chaotic advection in a 2-D mixed convection flow.
    Tangborn AV; Silevitch DM; Howes T
    Chaos; 1995 Jun; 5(2):432-438. PubMed ID: 12780197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and simulation of the micromixer with chaotic advection in twisted microchannels.
    Jen CP; Wu CY; Lin YC; Wu CY
    Lab Chip; 2003 May; 3(2):77-81. PubMed ID: 15100786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uniform resonant chaotic mixing in fluid flows.
    Solomon TH; Mezić I
    Nature; 2003 Sep; 425(6956):376-80. PubMed ID: 14508482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radial granular segregation under chaotic flow in two-dimensional tumblers.
    Cisar SE; Umbanhowar PB; Ottino JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051305. PubMed ID: 17279900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow decay of concentration variance due to no-slip walls in chaotic mixing.
    Gouillart E; Dauchot O; Dubrulle B; Roux S; Thiffeault JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026211. PubMed ID: 18850925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fixed-point densities for a quasiperiodic kicked-oscillator map.
    Lowenstein JH
    Chaos; 1995 Sep; 5(3):566-577. PubMed ID: 12780212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.