These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 1277993)

  • 41. [Studies on microsomal hydroxylation of naphthalene].
    Netter KJ
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1969; 262(3):375-87. PubMed ID: 4238723
    [No Abstract]   [Full Text] [Related]  

  • 42. Adhesion of Pseudomonas putida NCIB 9816-4 to a naphthalene-contaminated soil.
    Hwang G; Ban YM; Lee CH; Chung CH; Ahn IS
    Colloids Surf B Biointerfaces; 2008 Mar; 62(1):91-6. PubMed ID: 18023561
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Isolation and characterization of naphthalene-catabolic genes and plasmids from oil-contaminated soil by using two cultivation-independent approaches.
    Ono A; Miyazaki R; Sota M; Ohtsubo Y; Nagata Y; Tsuda M
    Appl Microbiol Biotechnol; 2007 Feb; 74(2):501-10. PubMed ID: 17096121
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Proteolytic activity of some strains from the Pseudomonas genus on mineral medium with naphthalene].
    Kvasnikov EI; Tin'ianova NZ
    Mikrobiol Zh; 1970; 32(4):416-9. PubMed ID: 5503671
    [No Abstract]   [Full Text] [Related]  

  • 45. Recruitment of naphthalene dissimilatory enzymes for the oxidation of 1,4-dichloronaphthalene to 3,6-dichlorosalicylate, a precursor for the herbicide dicamba.
    Durham DR; Stewart DB
    J Bacteriol; 1987 Jun; 169(6):2889-92. PubMed ID: 3584076
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Catabolism of aromatic compounds by micro-organisms.
    Dagley S
    Adv Microb Physiol; 1971; 6(0):1-46. PubMed ID: 4950664
    [No Abstract]   [Full Text] [Related]  

  • 47. Mechanism of salicylate hydroxylase-catalyzed decarboxylation.
    Suzuki K; Katagiri M
    Biochim Biophys Acta; 1981 Feb; 657(2):530-4. PubMed ID: 7213760
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Some properties of the naphthalene oxygenase from Pseudomonas sp. NCIB 9816.
    Catterall GF; Williams PA
    J Gen Microbiol; 1971 Jul; 67(1):117-24. PubMed ID: 4330923
    [No Abstract]   [Full Text] [Related]  

  • 49. Determination of the position of monooxygenation in the formation of catechol catalyzed by salicylate hydroxylase.
    Hamzah RY; Tu SC
    J Biol Chem; 1981 Jun; 256(12):6392-4. PubMed ID: 7240212
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The genetics of dissimilarity pathways in Pseudomonas.
    Wheelis L
    Annu Rev Microbiol; 1975; 29():505-24. PubMed ID: 1180523
    [No Abstract]   [Full Text] [Related]  

  • 51. Affinity chromatography of Pseudomonas salicylate hydroxylase.
    You K; Roe CR
    Anal Biochem; 1981 Jun; 114(1):177-85. PubMed ID: 7283150
    [No Abstract]   [Full Text] [Related]  

  • 52. O-18 studies on anthranilate hydroxylase--a novel mechanism of double hydroxylation.
    Kobayashi S; Kuno S; Itada N; Hayaishi O; Kozuka S; Oae S
    Biochem Biophys Res Commun; 1964 Aug; 16(6):556-61. PubMed ID: 5871846
    [No Abstract]   [Full Text] [Related]  

  • 53. Polarographic quantification of salicylate in serum by salicylate hydroxylase.
    You K
    Clin Chim Acta; 1985 Jul; 149(2-3):281-4. PubMed ID: 4028447
    [No Abstract]   [Full Text] [Related]  

  • 54. Regulation of the meta-cleavage of 4-hydroxyphenylacetic acid by Pseudomonas putida.
    Barbour MG; Bayly RC
    Biochem Biophys Res Commun; 1976 May; 76(2):565-71. PubMed ID: 1027447
    [No Abstract]   [Full Text] [Related]  

  • 55. Oxygen activation by the iron(II)-2-mercaptobenzoic acid complex. A model for microsomal mixed function oxygenases.
    Ullrich V
    Z Naturforsch B; 1969 Jun; 24(6):699-704. PubMed ID: 4390017
    [No Abstract]   [Full Text] [Related]  

  • 56. Incorporation of [18O]water in the formation of p-hydroxybenzyl alcohol by the p-cresol methylhydroxylase from Pseudomonas putida.
    Hopper DJ
    Biochem J; 1978 Oct; 175(1):345-7. PubMed ID: 736904
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metabolism of naphthalene by pseudomonads: salicylaldehyde as the first possible inducer in the metabolic pathway.
    Connors MA; Barnsley EA
    J Bacteriol; 1980 Mar; 141(3):1052-4. PubMed ID: 7364724
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metabolism of orally administered naphthalene in spawning English sole (Parophrys vetulus).
    Reichert WL; Varanasi U
    Environ Res; 1982 Apr; 27(2):316-24. PubMed ID: 7084162
    [No Abstract]   [Full Text] [Related]  

  • 59. Evolutionary significance of metabolic control systems. The beta-ketoadipate pathway provides a case history in bacteria.
    Cánovas JL; Ornston LN; Stanier RY
    Science; 1967 Jun; 156(3783):1695-9. PubMed ID: 5611030
    [No Abstract]   [Full Text] [Related]  

  • 60. Regulation of synthesis of early enzymes of p-hydroxybenzoate pathway in Pseudomonas putida.
    Hosokawa K
    J Biol Chem; 1970 Oct; 245(20):5304-8. PubMed ID: 5469168
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.