These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 12779958)

  • 1. Chaotic spectroscopy.
    Doron E; Smilansky U
    Chaos; 1992 Jan; 2(1):117-124. PubMed ID: 12779958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The semiclassical functional equation.
    Keating J
    Chaos; 1992 Jan; 2(1):15-17. PubMed ID: 12779946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classical invariants and the quantization of chaotic systems.
    Wisniacki DA; Vergini E; Benito RM; Borondo F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):035202. PubMed ID: 15524573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semiclassical quantization of nonadiabatic systems with hopping periodic orbits.
    Fujii M; Yamashita K
    J Chem Phys; 2015 Feb; 142(7):074104. PubMed ID: 25701999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaotic scattering on graphs.
    Kottos T; Smilansky U
    Phys Rev Lett; 2000 Jul; 85(5):968-71. PubMed ID: 10991451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semiclassical quantization of the diamagnetic hydrogen atom with near-action-degenerate periodic-orbit bunches.
    Gehrke J; Main J; Wunner G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066207. PubMed ID: 21230723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semiclassical quantization of neutrino billiards.
    Dietz B; Li ZY
    Phys Rev E; 2020 Oct; 102(4-1):042214. PubMed ID: 33212672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semiclassical relation between open trajectories and periodic orbits for the Wigner time delay.
    Kuipers J; Sieber M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046219. PubMed ID: 18517722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient chaos in room acoustics.
    Mortessagne F; Legrand O; Sornette D
    Chaos; 1993 Oct; 3(4):529-541. PubMed ID: 12780059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. variant Planck's over 2pi expansion for the periodic orbit quantization of chaotic systems.
    Alonso D; Gaspard P
    Chaos; 1993 Oct; 3(4):601-612. PubMed ID: 12780065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiclassical theory of chaotic conductors.
    Heusler S; Müller S; Braun P; Haake F
    Phys Rev Lett; 2006 Feb; 96(6):066804. PubMed ID: 16606030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous shell effect in the transition from a circular to a triangular billiard.
    Arita K; Brack M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056211. PubMed ID: 18643146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaotic scattering on a double well: Periodic orbits, symbolic dynamics, and scaling.
    Daniels V; Vallieres M; Yuan JM
    Chaos; 1993 Oct; 3(4):475-485. PubMed ID: 12780053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pseudopath semiclassical approximation to transport through open quantum billiards: Dyson equation for diffractive scattering.
    Stampfer C; Rotter S; Burgdörfer J; Wirtz L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036223. PubMed ID: 16241564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semiclassical study of the one-dimensional hydrogen molecule.
    López-Castillo A
    Chaos; 2008 Sep; 18(3):033130. PubMed ID: 19045468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaotic scattering, unstable periodic orbits, and fluctuations in quantum transport.
    Jensen RV
    Chaos; 1991 Jul; 1(1):101-109. PubMed ID: 12779901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On dynamical zeta function.
    Bogomolny E
    Chaos; 1992 Jan; 2(1):5-13. PubMed ID: 12779945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stickiness in mushroom billiards.
    Altmann EG; Motter AE; Kantz H
    Chaos; 2005 Sep; 15(3):33105. PubMed ID: 16252979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Marginally unstable periodic orbits in semiclassical mushroom billiards.
    Andreasen J; Cao H; Wiersig J; Motter AE
    Phys Rev Lett; 2009 Oct; 103(15):154101. PubMed ID: 19905639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Periodic orbit theory for the Hénon-Heiles system in the continuum region.
    Kaidel J; Winkler P; Brack M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066208. PubMed ID: 15697485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.