These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 12779996)

  • 1. Billiard in a barrel.
    Zaslavsky GM; Strauss HR
    Chaos; 1992 Oct; 2(4):469-472. PubMed ID: 12779996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lyapunov exponents and kolmogorov-sinai entropy for a high-dimensional convex billiard.
    Papenbrock T
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):1337-41. PubMed ID: 11046411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Sinai billiard, square torus, and field chaos.
    Liboff RL; Liu J
    Chaos; 2000 Dec; 10(4):756-759. PubMed ID: 12779425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the Entropy of a One-Dimensional Gas with and without Mixing Using Sinai Billiard.
    Sobol A; Güntert P; Riek R
    Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kolmogorov-Sinai entropy for the A+B-->P reaction in transitional flows.
    Rogberg P; Cvetkovic V
    J Chem Phys; 2004 Apr; 120(14):6423-9. PubMed ID: 15267531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conditions of stochasticity of two-dimensional billiards.
    Bunimovich LA
    Chaos; 1991 Aug; 1(2):187-193. PubMed ID: 12779912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaos in the square billiard with a modified reflection law.
    Del Magno G; Lopes Dias J; Duarte P; Gaivão JP; Pinheiro D
    Chaos; 2012 Jun; 22(2):026106. PubMed ID: 22757565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaos in the band structure of a soft Sinai lattice.
    Porter MD; Barr A; Barr A; Reichl LE
    Phys Rev E; 2017 May; 95(5-1):052213. PubMed ID: 28618569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ordinal Pattern Based Entropies and the Kolmogorov-Sinai Entropy: An Update.
    Gutjahr T; Keller K
    Entropy (Basel); 2020 Jan; 22(1):. PubMed ID: 33285838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kolmogorov-Sinai entropy of many-body Hamiltonian systems.
    Lakshminarayan A; Tomsovic S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016218. PubMed ID: 21867284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hamilton-Jacobi formulation of Kolmogorov-Sinai entropy for classical and quantum dynamics.
    Partovi MH
    Phys Rev Lett; 2002 Sep; 89(14):144101. PubMed ID: 12366049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smooth phase transition of energy equilibration in a springy Sinai billiard.
    Shah K
    Phys Rev E; 2019 Jun; 99(6-1):062204. PubMed ID: 31330698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional maps at the edge of chaos: numerical results for the Henon map.
    Tirnakli U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066212. PubMed ID: 12513389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability and ergodicity of moon billiards.
    Correia MF; Zhang HK
    Chaos; 2015 Aug; 25(8):083110. PubMed ID: 26328561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Annular billiard dynamics in a circularly polarized strong laser field.
    Kamor A; Mauger F; Chandre C; Uzer T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016204. PubMed ID: 22400640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaos in the one-dimensional gravitational three-body problem.
    Hietarinta J; Mikkola S
    Chaos; 1993 Apr; 3(2):183-203. PubMed ID: 12780027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A two-parameter study of the extent of chaos in a billiard system.
    Dullin HR; Richter PH; Wittek A
    Chaos; 1996 Mar; 6(1):43-58. PubMed ID: 12780234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical study of a three-dimensional generalized stadium billiard.
    Papenbrock T
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt B):4626-8. PubMed ID: 11088268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Weak and strong chaos in Fermi-Pasta-Ulam models and beyond.
    Pettini M; Casetti L; Cerruti-Sola M; Franzosi R; Cohen EG
    Chaos; 2005 Mar; 15(1):15106. PubMed ID: 15836283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical properties of chaos demonstrated in a class of one-dimensional maps.
    Csordas A; Gyorgyi G; Szepfalusy P; Tel T
    Chaos; 1993 Jan; 3(1):31-49. PubMed ID: 12780013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.