These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Quantum transport through ballistic cavities: soft vs hard quantum chaos. Huckestein B; Ketzmerick R; Lewenkopf CH Phys Rev Lett; 2000 Jun; 84(24):5504-7. PubMed ID: 10990980 [TBL] [Abstract][Full Text] [Related]
6. Scanning gate imaging of a disordered quantum point contact. Aoki N; da Cunha CR; Akis R; Ferry DK; Ochiai Y J Phys Condens Matter; 2014 May; 26(19):193202. PubMed ID: 24763258 [TBL] [Abstract][Full Text] [Related]
7. Quantum chaos in nano-sized billiards in layered two-dimensional semiconductor structures. Berggren KF; Ji ZL Chaos; 1996 Dec; 6(4):543-553. PubMed ID: 12780285 [TBL] [Abstract][Full Text] [Related]
8. Pseudopath semiclassical approximation to transport through open quantum billiards: Dyson equation for diffractive scattering. Stampfer C; Rotter S; Burgdörfer J; Wirtz L Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036223. PubMed ID: 16241564 [TBL] [Abstract][Full Text] [Related]
9. Semiclassical theory of chaotic conductors. Heusler S; Müller S; Braun P; Haake F Phys Rev Lett; 2006 Feb; 96(6):066804. PubMed ID: 16606030 [TBL] [Abstract][Full Text] [Related]
10. Microscopic theory for the quantum to classical crossover in chaotic transport. Whitney RS; Jacquod P Phys Rev Lett; 2005 Mar; 94(11):116801. PubMed ID: 15903878 [TBL] [Abstract][Full Text] [Related]
11. Quantum chaotic scattering in graphene systems in the absence of invariant classical dynamics. Wang GL; Ying L; Lai YC; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052908. PubMed ID: 23767599 [TBL] [Abstract][Full Text] [Related]
12. Semiclassical scattering theory for ballistic electron transport in semiconductor microstructures: Unitarity, coherent backscattering, and weak localization. Lin WA; Jensen RV Phys Rev B Condens Matter; 1996 Feb; 53(7):3638-3641. PubMed ID: 9983910 [No Abstract] [Full Text] [Related]
13. Mesoscopic superconductor as a ballistic quantum switch. Mel'nikov AS; Vinokur VM Nature; 2002 Jan; 415(6867):60-2. PubMed ID: 11780114 [TBL] [Abstract][Full Text] [Related]
14. Quantum chaotic scattering with a mixed phase space: the three-disk billiard in a magnetic field. Eichengrun M; Schirmacher W; Bregmann W Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):382-9. PubMed ID: 11046276 [TBL] [Abstract][Full Text] [Related]
15. Semiclassical theory of chaotic quantum transport. Richter K; Sieber M Phys Rev Lett; 2002 Nov; 89(20):206801. PubMed ID: 12443495 [TBL] [Abstract][Full Text] [Related]
16. Conductance fluctuations in chaotic bilayer graphene quantum dots. Bao R; Huang L; Lai YC; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012918. PubMed ID: 26274258 [TBL] [Abstract][Full Text] [Related]
17. Regular conductance fluctuations indicative of quasi-ballistic transport in bilayer graphene. Ujiie Y; Motooka S; Morimoto T; Aoki N; Ferry DK; Bird JP; Ochiai Y J Phys Condens Matter; 2009 Sep; 21(38):382202. PubMed ID: 21832362 [TBL] [Abstract][Full Text] [Related]
18. Scattering properties of a cut-circle billiard waveguide with two conical leads. Fuchss K; Ree S; Reichl LE Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016214. PubMed ID: 11304342 [TBL] [Abstract][Full Text] [Related]
19. Conductance through two dots coupled in series: application of the exact solution. Sakano R; Kawakami N J Electron Microsc (Tokyo); 2005; 54 Suppl 1():i57-60. PubMed ID: 16157643 [TBL] [Abstract][Full Text] [Related]
20. Breakdown of universality in quantum chaotic transport: the two-phase dynamical fluid model. Jacquod P; Sukhorukov EV Phys Rev Lett; 2004 Mar; 92(11):116801. PubMed ID: 15089157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]