These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 12780074)

  • 1. Rhombic patterns: Broken hexagonal symmetry.
    Ouyang Q; Gunaratne GH; Swinney HL
    Chaos; 1993 Oct; 3(4):707-711. PubMed ID: 12780074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defect chaos of oscillating hexagons in rotating convection.
    Echebarria B; Riecke H
    Phys Rev Lett; 2000 May; 84(21):4838-41. PubMed ID: 10990811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of turing structures in the chlorite--iodide--malonic Acid--starch reaction system.
    Lengyel I; Epstein IR
    Science; 1991 Feb; 251(4994):650-2. PubMed ID: 17741380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition to chemical turbulence.
    Ouyang Q; Swinney HL
    Chaos; 1991 Dec; 1(4):411-420. PubMed ID: 12779937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turing patterns beyond hexagons and stripes.
    Yang L; Dolnik M; Zhabotinsky AM; Epstein IR
    Chaos; 2006 Sep; 16(3):037114. PubMed ID: 17014248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of hexagonal patterns in Bénard-Marangoni convection.
    Echebarria B; Pérez-García C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066307. PubMed ID: 11415227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pattern formation in forced reaction diffusion systems with nearly degenerate bifurcations.
    Halloy J; Sonnino G; Coullet P
    Chaos; 2007 Sep; 17(3):037107. PubMed ID: 17903014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turing patterns, spatial bistability, and front interactions in the [ClO2, I2, I-, CH2(COOH)2] reaction.
    Strier DE; De Kepper P; Boissonade J
    J Phys Chem A; 2005 Feb; 109(7):1357-63. PubMed ID: 16833452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inward propagating chemical waves in a single-phase reaction-diffusion system.
    Shao X; Wu Y; Zhang J; Wang H; Ouyang Q
    Phys Rev Lett; 2008 May; 100(19):198304. PubMed ID: 18518496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stripe-hexagon competition in forced pattern-forming systems with broken up-down symmetry.
    Peter R; Hilt M; Ziebert F; Bammert J; Erlenkämper C; Lorscheid N; Weitenberg C; Winter A; Hammele M; Zimmermann W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046212. PubMed ID: 15903775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solitary pulses in linearly coupled Ginzburg-Landau equations.
    Malomed BA
    Chaos; 2007 Sep; 17(3):037117. PubMed ID: 17903024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiresonant forcing of the complex Ginzburg-Landau equation: pattern selection.
    Conway JM; Riecke H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):057202. PubMed ID: 18233797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotations in a vertebrate setting: evaluation of the symmetry group of the disynaptic canal-neck projection.
    McCollum G; Boyle R
    Biol Cybern; 2004 Mar; 90(3):203-17. PubMed ID: 15052483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative and qualitative characterization of zigzag spatiotemporal chaos in a system of amplitude equations for nematic electroconvection.
    Oprea I; Triandaf I; Dangelmayr G; Schwartz IB
    Chaos; 2007 Jun; 17(2):023101. PubMed ID: 17614655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and control of patterns in reaction-diffusion systems.
    Vanag VK; Epstein IR
    Chaos; 2008 Jun; 18(2):026107. PubMed ID: 18601509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reorientation of a hexagonal pattern under broken symmetry: the hexagon flip.
    Groh C; Richter R; Rehberg I; Busse FH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):055301. PubMed ID: 18233708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial bistability: a source of complex dynamics. From spatiotemporal reaction-diffusion patterns to chemomechanical structures.
    Boissonade J; De Kepper P; Gauffre F; Szalai I
    Chaos; 2006 Sep; 16(3):037110. PubMed ID: 17014244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulated morphological landscape of polymer single crystals by phase field model.
    Wang D; Shi T; Chen J; An L; Jia Y
    J Chem Phys; 2008 Nov; 129(19):194903. PubMed ID: 19026085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental design method leading to chemical Turing patterns.
    Horváth J; Szalai I; De Kepper P
    Science; 2009 May; 324(5928):772-5. PubMed ID: 19423823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Twisted vortex filaments in the three-dimensional complex Ginzburg-Landau equation.
    Rousseau G; Chaté H; Kapral R
    Chaos; 2008 Jun; 18(2):026103. PubMed ID: 18601505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.