These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 12780119)

  • 1. The Ginzburg-Landau approach to oscillatory media.
    Kramer L; Hynne F; Graae Sorenson P; Walgraef D
    Chaos; 1994 Sep; 4(3):443-452. PubMed ID: 12780119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vortex dynamics in oscillatory chemical systems.
    Wu XG; Chee MN; Kapral R
    Chaos; 1991 Dec; 1(4):421-434. PubMed ID: 12779938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Twisted vortex filaments in the three-dimensional complex Ginzburg-Landau equation.
    Rousseau G; Chaté H; Kapral R
    Chaos; 2008 Jun; 18(2):026103. PubMed ID: 18601505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bifurcation analysis of a normal form for excitable media: are stable dynamical alternans on a ring possible?
    Gottwald GA
    Chaos; 2008 Mar; 18(1):013129. PubMed ID: 18377080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronization in nonidentical complex Ginzburg-Landau equations.
    Zhou CT
    Chaos; 2006 Mar; 16(1):013124. PubMed ID: 16599755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractional dynamics of coupled oscillators with long-range interaction.
    Tarasov VE; Zaslavsky GM
    Chaos; 2006 Jun; 16(2):023110. PubMed ID: 16822013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite wavelength instabilities in a slow mode coupled complex ginzburg-landau equation.
    Ipsen M; Sorensen PG
    Phys Rev Lett; 2000 Mar; 84(11):2389-92. PubMed ID: 11018892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition from oscillatory to excitable regime in a system forced at three times its natural frequency.
    Gallego R; Walgraef D; Miguel MS; Toral R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056218. PubMed ID: 11736065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defect chaos and bursts: hexagonal rotating convection and the complex Ginzburg-Landau equation.
    Madruga S; Riecke H; Pesch W
    Phys Rev Lett; 2006 Feb; 96(7):074501. PubMed ID: 16606097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of the chain of forced oscillators with long-range interaction: from synchronization to chaos.
    Zaslavsky GM; Edelman M; Tarasov VE
    Chaos; 2007 Dec; 17(4):043124. PubMed ID: 18163788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrete and periodic complex Ginzburg-Landau equation for a hydrodynamic active lattice.
    Thomson SJ; Durey M; Rosales RR
    Phys Rev E; 2021 Jun; 103(6-1):062215. PubMed ID: 34271671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Front reversals, wave traps, and twisted spirals in periodically forced oscillatory media.
    Rudzick O; Mikhailov AS
    Phys Rev Lett; 2006 Jan; 96(1):018302. PubMed ID: 16486527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex Ginzburg-Landau equation with nonlocal coupling.
    Tanaka D; Kuramoto Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026219. PubMed ID: 14525096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pattern formation in forced reaction diffusion systems with nearly degenerate bifurcations.
    Halloy J; Sonnino G; Coullet P
    Chaos; 2007 Sep; 17(3):037107. PubMed ID: 17903014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solitary pulses in linearly coupled Ginzburg-Landau equations.
    Malomed BA
    Chaos; 2007 Sep; 17(3):037117. PubMed ID: 17903024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative and qualitative characterization of zigzag spatiotemporal chaos in a system of amplitude equations for nematic electroconvection.
    Oprea I; Triandaf I; Dangelmayr G; Schwartz IB
    Chaos; 2007 Jun; 17(2):023101. PubMed ID: 17614655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retracting fronts induce spatiotemporal intermittency.
    Coullet P; Kramer L
    Chaos; 2004 Jun; 14(2):244-8. PubMed ID: 15189052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal critical behavior of noisy coupled oscillators: a renormalization group study.
    Risler T; Prost J; Jülicher F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016130. PubMed ID: 16090059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hole structures in nonlocally coupled noisy phase oscillators.
    Kawamura Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):047201. PubMed ID: 17995138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition from pulses to fronts in the cubic-quintic complex Ginzburg-Landau equation.
    Gutiérrez P; Escaff D; Descalzi O
    Philos Trans A Math Phys Eng Sci; 2009 Aug; 367(1901):3227-38. PubMed ID: 19620120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.