These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 12780142)

  • 1. Normally attracting manifolds and periodic behavior in one-dimensional and two-dimensional coupled map lattices.
    Giberti C; Vernia C
    Chaos; 1994 Dec; 4(4):651-663. PubMed ID: 12780142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchronized family dynamics in globally coupled maps.
    Balmforth NJ; Jacobson A; Provenzale A
    Chaos; 1999 Sep; 9(3):738-754. PubMed ID: 12779870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cycling chaotic attractors in two models for dynamics with invariant subspaces.
    Ashwin P; Rucklidge AM; Sturman R
    Chaos; 2004 Sep; 14(3):571-82. PubMed ID: 15446967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secondary homoclinic bifurcation theorems.
    Rom-Kedar V
    Chaos; 1995 Jun; 5(2):385-401. PubMed ID: 12780192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical properties of actions of periodic orbits.
    Sano MM
    Chaos; 2000 Mar; 10(1):195-210. PubMed ID: 12779375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global analysis of periodic orbit bifurcations in coupled Morse oscillator systems: time-reversal symmetry, permutational representations and codimension-2 collisions.
    Tsuchiya M; Ezra GS
    Chaos; 1999 Dec; 9(4):819-840. PubMed ID: 12779878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional global manifolds of vector fields.
    Krauskopf B; Osinga H
    Chaos; 1999 Sep; 9(3):768-774. PubMed ID: 12779872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On a simple recursive control algorithm automated and applied to an electrochemical experiment.
    Rhode MA; Rollins RW; Dewald HD
    Chaos; 1997 Dec; 7(4):653-663. PubMed ID: 12779691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple model of chaotic advection and scattering.
    Stolovitzky G; Kaper TJ; Sirovich L
    Chaos; 1995 Dec; 5(4):671-686. PubMed ID: 12780224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periodic orbits in a two-variable coupled map.
    Houlrik JM
    Chaos; 1992 Jul; 2(3):323-327. PubMed ID: 12779981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical ordering of symmetric non-Birkhoff periodic points in reversible monotone twist mappings.
    Tanikawa K; Yamaguchi Y
    Chaos; 2002 Mar; 12(1):33-41. PubMed ID: 12779530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asynchronous updating of coupled maps leads to synchronization.
    Mehta M; Sinha S
    Chaos; 2000 Jun; 10(2):350-358. PubMed ID: 12779390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the global orbits in a bistable CML.
    Coutinho R; Fernandez B
    Chaos; 1997 Jun; 7(2):301-310. PubMed ID: 12779658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Easy-to-implement method to target nonlinear systems.
    Baptista MS; Caldas IL
    Chaos; 1998 Mar; 8(1):290-299. PubMed ID: 12779732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of unstable periodic orbits and the stickiness in the two-dimensional piecewise linear map.
    Akaishi A; Shudo A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066211. PubMed ID: 20365258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical behavior of the multiplicative diffusion coupled map lattices.
    Wang W; Cerdeira HA
    Chaos; 1996 Jun; 6(2):200-208. PubMed ID: 12780248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unstable periodic orbits and templates of the Rossler system: Toward a systematic topological characterization.
    Letellier C; Dutertre P; Maheu B
    Chaos; 1995 Mar; 5(1):271-282. PubMed ID: 12780181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stalactite basin structure of dynamical systems with transient chaos in an invariant manifold.
    Dronov V; Ott E
    Chaos; 2000 Jun; 10(2):291-298. PubMed ID: 12779384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex mixed-mode periodic and chaotic oscillations in a simple three-variable model of nonlinear system.
    Kawczynski AL; Khavrus VO; Strizhak PE
    Chaos; 2000 Jun; 10(2):299-310. PubMed ID: 12779385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits.
    Gonchenko SV; Shil'nikov LP; Turaev DV
    Chaos; 1996 Mar; 6(1):15-31. PubMed ID: 12780232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.