These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Stability diagram for the forced Kuramoto model. Childs LM; Strogatz SH Chaos; 2008 Dec; 18(4):043128. PubMed ID: 19123638 [TBL] [Abstract][Full Text] [Related]
5. Automatic classification of interference patterns in driven event series: application to single sympathetic neuron discharge forced by mechanical ventilation. Porta A; Montano N; Furlan R; Cogliati C; Guzzetti S; Gnecchi-Ruscone T; Malliani A; Chang HS; Staras K; Gilbey MP Biol Cybern; 2004 Oct; 91(4):258-73. PubMed ID: 15378378 [TBL] [Abstract][Full Text] [Related]
6. The effect of Lagrangian chaos on locking bifurcations in shear flows. Finn JM Chaos; 2002 Jun; 12(2):508-517. PubMed ID: 12779581 [TBL] [Abstract][Full Text] [Related]
7. Universal occurrence of the phase-flip bifurcation in time-delay coupled systems. Prasad A; Dana SK; Karnatak R; Kurths J; Blasius B; Ramaswamy R Chaos; 2008 Jun; 18(2):023111. PubMed ID: 18601478 [TBL] [Abstract][Full Text] [Related]
8. Random dynamics of the Morris-Lecar neural model. Tateno T; Pakdaman K Chaos; 2004 Sep; 14(3):511-30. PubMed ID: 15446961 [TBL] [Abstract][Full Text] [Related]
9. Pathological tremors: Deterministic chaos or nonlinear stochastic oscillators? Timmer J; Haussler S; Lauk M; Lucking CH Chaos; 2000 Mar; 10(1):278-288. PubMed ID: 12779383 [TBL] [Abstract][Full Text] [Related]
10. A new class of non-linear stochastic population models with mass conservation. Kooijman SA; Grasman J; Kooi BW Math Biosci; 2007 Dec; 210(2):378-94. PubMed ID: 17659307 [TBL] [Abstract][Full Text] [Related]
11. Noise-induced mixed-mode oscillations in a relaxation oscillator near the onset of a limit cycle. Muratov CB; Vanden-Eijnden E Chaos; 2008 Mar; 18(1):015111. PubMed ID: 18377092 [TBL] [Abstract][Full Text] [Related]
12. Resonances and noise in a stochastic Hindmarsh-Rose model of thalamic neurons. Reinker S; Puil E; Miura RM Bull Math Biol; 2003 Jul; 65(4):641-63. PubMed ID: 12875337 [TBL] [Abstract][Full Text] [Related]
13. Multi-scale continuum mechanics: from global bifurcations to noise induced high-dimensional chaos. Schwartz IB; Morgan DS; Billings L; Lai YC Chaos; 2004 Jun; 14(2):373-86. PubMed ID: 15189066 [TBL] [Abstract][Full Text] [Related]
14. Bifurcation analysis of a normal form for excitable media: are stable dynamical alternans on a ring possible? Gottwald GA Chaos; 2008 Mar; 18(1):013129. PubMed ID: 18377080 [TBL] [Abstract][Full Text] [Related]
15. On chaotic dynamics in "pseudobilliard" Hamiltonian systems with two degrees of freedom. Eleonsky VM; Korolev VG; Kulagin NE Chaos; 1997 Dec; 7(4):710-730. PubMed ID: 12779697 [TBL] [Abstract][Full Text] [Related]
16. Chaotic transition in a three-coupled phase-locked loop system. Tsuruda H; Shirahama H; Fukushima K; Nagadome M; Inoue M Chaos; 2001 Jun; 11(2):410-416. PubMed ID: 12779476 [TBL] [Abstract][Full Text] [Related]
17. Whole cell stochastic model reproduces the irregularities found in the membrane potential of bursting neurons. Carelli PV; Reyes MB; Sartorelli JC; Pinto RD J Neurophysiol; 2005 Aug; 94(2):1169-79. PubMed ID: 15800078 [TBL] [Abstract][Full Text] [Related]
18. Stochastic bifurcation in noise-driven lasers and Hopf oscillators. Wieczorek S Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036209. PubMed ID: 19392037 [TBL] [Abstract][Full Text] [Related]
19. Control of noisy chaotic motion in a system with nonlinear excitation and restoring forces. King PE; Yim SC Chaos; 1997 Jun; 7(2):290-300. PubMed ID: 12779657 [TBL] [Abstract][Full Text] [Related]
20. A normal form for excitable media. Gottwald GA; Kramer L Chaos; 2006 Mar; 16(1):013122. PubMed ID: 16599753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]