These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 12780190)

  • 1. Bifurcations in biparametric quadratic potentials.
    Lanchares V; Elipe A
    Chaos; 1995 Jun; 5(2):367-373. PubMed ID: 12780190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bifurcations in biparametric quadratic potentials. II.
    Lanchares V; Elipe A
    Chaos; 1995 Sep; 5(3):531-535. PubMed ID: 12780209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits.
    Gonchenko SV; Shil'nikov LP; Turaev DV
    Chaos; 1996 Mar; 6(1):15-31. PubMed ID: 12780232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shilnikov homoclinic orbit bifurcations in the Chua's circuit.
    Medrano-T RO; Baptista MS; Caldas IL
    Chaos; 2006 Dec; 16(4):043119. PubMed ID: 17199397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global analysis of periodic orbit bifurcations in coupled Morse oscillator systems: time-reversal symmetry, permutational representations and codimension-2 collisions.
    Tsuchiya M; Ezra GS
    Chaos; 1999 Dec; 9(4):819-840. PubMed ID: 12779878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Basic structures of the Shilnikov homoclinic bifurcation scenario.
    Medrano-T RO; Baptista MS; Caldas IL
    Chaos; 2005 Sep; 15(3):33112. PubMed ID: 16252986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bifurcations accompanying monotonic instability of an equilibrium of a cosymmetric dynamical system.
    Kurakin LG; Yudovich VI
    Chaos; 2000 Jun; 10(2):311-330. PubMed ID: 12779386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcritical bifurcations in nonintegrable Hamiltonian systems.
    Brack M; Tanaka K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046205. PubMed ID: 18517708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow passage through a transcritical bifurcation for Hamiltonian systems and the change in action due to a nonhyperbolic homoclinic orbit.
    Haberman R
    Chaos; 2000 Sep; 10(3):641-648. PubMed ID: 12779413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability and bifurcations of a stationary state for an impact oscillator.
    Aidanpaa JO; Shen HH; Gupta RB
    Chaos; 1994 Dec; 4(4):621-630. PubMed ID: 12780139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On chaotic dynamics in "pseudobilliard" Hamiltonian systems with two degrees of freedom.
    Eleonsky VM; Korolev VG; Kulagin NE
    Chaos; 1997 Dec; 7(4):710-730. PubMed ID: 12779697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Border collision bifurcations at the change of state-space dimension.
    Parui S; Banerjee S
    Chaos; 2002 Dec; 12(4):1054-1069. PubMed ID: 12779629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homoclinic bifurcation in a Hodgkin-Huxley model of thermally sensitive neurons.
    Feudel U; Neiman A; Pei X; Wojtenek W; Braun H; Huber M; Moss F
    Chaos; 2000 Mar; 10(1):231-239. PubMed ID: 12779378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary homoclinic bifurcation theorems.
    Rom-Kedar V
    Chaos; 1995 Jun; 5(2):385-401. PubMed ID: 12780192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical ordering of symmetric non-Birkhoff periodic points in reversible monotone twist mappings.
    Tanikawa K; Yamaguchi Y
    Chaos; 2002 Mar; 12(1):33-41. PubMed ID: 12779530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On noninvertible mappings of the plane: Eruptions.
    Billings L; Curry JH
    Chaos; 1996 Jun; 6(2):108-120. PubMed ID: 12780241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronizing Moore and Spiegel.
    Balmforth NJ; Craster RV
    Chaos; 1997 Dec; 7(4):738-752. PubMed ID: 12779699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bifurcations of the trajectories at the saddle level in a Hamiltonian system generated by two coupled Schrodinger equations.
    Eleonsky VM; Korolev VG; Kulagin NE; Shil'nikov LP
    Chaos; 1992 Oct; 2(4):571-579. PubMed ID: 12780004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homoclinic organization in the Hindmarsh-Rose model: A three parameter study.
    Barrio R; Ibáñez S; Pérez L
    Chaos; 2020 May; 30(5):053132. PubMed ID: 32491901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Lorenz-type attractor in a piecewise-smooth system: Rigorous results.
    Belykh VN; Barabash NV; Belykh IV
    Chaos; 2019 Oct; 29(10):103108. PubMed ID: 31675821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.