These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 12780219)

  • 1. Iterated function systems and dynamical systems.
    Gora P; Boyarsky A
    Chaos; 1995 Dec; 5(4):634-639. PubMed ID: 12780219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remark on the (non)convergence of ensemble densities in dynamical systems.
    Goldstein S; Lebowitz JL; Sinai Y
    Chaos; 1998 Jun; 8(2):393-395. PubMed ID: 12779743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for visualization of invariant sets of dynamical systems based on the ergodic partition.
    Mezic I; Wiggins S
    Chaos; 1999 Mar; 9(1):213-218. PubMed ID: 12779816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entropy computing via integration over fractal measures.
    Słomczynski W; Kwapien J; Zyczkowski K
    Chaos; 2000 Mar; 10(1):180-188. PubMed ID: 12779373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entropy conservation as h(T(&mgr;) ) approximately lambda(&mgr;) (+)d(&mgr;) in neurobiological dynamical systems.
    Mandell AJ; Selz KA
    Chaos; 1997 Mar; 7(1):67-81. PubMed ID: 12779638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring invariant sets and invariant measures.
    Dellnitz M; Hohmann A; Junge O; Rumpf M
    Chaos; 1997 Jun; 7(2):221-228. PubMed ID: 12779650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An analytical construction of the SRB measures for Baker-type maps.
    Tasaki S; Gilbert T; Dorfman JR
    Chaos; 1998 Jun; 8(2):424-443. PubMed ID: 12779746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entropy balance, time reversibility, and mass transport in dynamical systems.
    Breymann W; Tel T; Vollmer J
    Chaos; 1998 Jun; 8(2):396-408. PubMed ID: 12779744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic derivation of amplitude equations and normal forms for dynamical systems.
    Ipsen M; Hynne F; Sorensen PG
    Chaos; 1998 Dec; 8(4):834-852. PubMed ID: 12779791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamical ensembles in nonequilibrium statistical mechanics and their representations.
    Rondoni L; Stocker S
    Chaos; 1998 Jun; 8(2):374-383. PubMed ID: 12779741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Marginal singularities, almost invariant sets, and small perturbations of chaotic dynamical systems.
    Blank ML
    Chaos; 1991 Oct; 1(3):347-356. PubMed ID: 12779932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probabilistic and thermodynamic aspects of dynamical systems.
    Nicolis G; Daems D
    Chaos; 1998 Jun; 8(2):311-320. PubMed ID: 12779735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear forecasting and iterated function systems.
    Mantica G; Giraud BG
    Chaos; 1992 Apr; 2(2):225-230. PubMed ID: 12779968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The multifractal analysis of Gibbs measures: Motivation, mathematical foundation, and examples.
    Pesin Y; Weiss H
    Chaos; 1997 Mar; 7(1):89-106. PubMed ID: 12779640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indecomposable continua in dynamical systems with noise: Fluid flow past an array of cylinders.
    Sanjuan MA; Kennedy J; Grebogi C; Yorke JA
    Chaos; 1997 Mar; 7(1):125-138. PubMed ID: 12779642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entropy of Iterated Function Systems and Their Relations with Black Holes and Bohr-Like Black Holes Entropies.
    Corda C; FatehiNia M; Molaei M; Sayyari Y
    Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifractal structure of a riddled basin.
    Suetani H; Horita T
    Chaos; 2001 Dec; 11(4):795-801. PubMed ID: 12779518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Dynamical confinement" in neural networks and cell cycle.
    Demongeot J; Benaouda D; Jezequel C
    Chaos; 1995 Mar; 5(1):167-173. PubMed ID: 12780170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory and examples of the inverse Frobenius-Perron problem for complete chaotic maps.
    Pingel D; Schmelcher P; Diakonos FK
    Chaos; 1999 Jun; 9(2):357-366. PubMed ID: 12779834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generating chaos with a switching piecewise-linear controller.
    Lu J; Zhou T; Chen G; Yang X
    Chaos; 2002 Jun; 12(2):344-349. PubMed ID: 12779563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.