These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 12780248)
1. Dynamical behavior of the multiplicative diffusion coupled map lattices. Wang W; Cerdeira HA Chaos; 1996 Jun; 6(2):200-208. PubMed ID: 12780248 [TBL] [Abstract][Full Text] [Related]
2. Synchronized family dynamics in globally coupled maps. Balmforth NJ; Jacobson A; Provenzale A Chaos; 1999 Sep; 9(3):738-754. PubMed ID: 12779870 [TBL] [Abstract][Full Text] [Related]
3. A coupled map lattice model for rheological chaos in sheared nematic liquid crystals. Kamil SM; Menon GI; Sinha S Chaos; 2010 Dec; 20(4):043123. PubMed ID: 21198093 [TBL] [Abstract][Full Text] [Related]
4. The spatial logistic map as a simple prototype for spatiotemporal chaos. Willeboordse FH Chaos; 2003 Jun; 13(2):533-40. PubMed ID: 12777117 [TBL] [Abstract][Full Text] [Related]
5. Coupled maps with local and global interactions. Ouchi NB; Kaneko K Chaos; 2000 Jun; 10(2):359-365. PubMed ID: 12779391 [TBL] [Abstract][Full Text] [Related]
6. Critical properties of lattices of diffusively coupled quadratic maps. Van De Water W; Bohr T Chaos; 1993 Oct; 3(4):747-756. PubMed ID: 12780077 [TBL] [Abstract][Full Text] [Related]
7. The largest Lyapunov exponent of chaotic dynamical system in scale space and its application. Liu HF; Yang YZ; Dai ZH; Yu ZH Chaos; 2003 Sep; 13(3):839-44. PubMed ID: 12946175 [TBL] [Abstract][Full Text] [Related]
8. Normally attracting manifolds and periodic behavior in one-dimensional and two-dimensional coupled map lattices. Giberti C; Vernia C Chaos; 1994 Dec; 4(4):651-663. PubMed ID: 12780142 [TBL] [Abstract][Full Text] [Related]
9. Local Lyapunov exponents for spatiotemporal chaos. Pikovsky AS Chaos; 1993 Apr; 3(2):225-232. PubMed ID: 12780031 [TBL] [Abstract][Full Text] [Related]
10. Suppression of chaos and other dynamical transitions induced by intercellular coupling in a model for cyclic AMP signaling in Dictyostelium cells. Li YX; Halloy J; Martiel JL; Goldbeter A Chaos; 1992 Oct; 2(4):501-512. PubMed ID: 12779999 [TBL] [Abstract][Full Text] [Related]
12. Symbolic synchronization and the detection of global properties of coupled dynamics from local information. Jalan S; Jost J; Atay FM Chaos; 2006 Sep; 16(3):033124. PubMed ID: 17014229 [TBL] [Abstract][Full Text] [Related]
13. Nonlinear dynamical analysis of turbulence in a stable cloud layer. Palmer AJ Chaos; 1995 Mar; 5(1):311-316. PubMed ID: 12780184 [TBL] [Abstract][Full Text] [Related]
15. Symmetry breaking, bifurcations, quasiperiodicity, and chaos due to electric fields in a coupled cell model. Hasal P; Merkin JH Chaos; 2002 Mar; 12(1):72-86. PubMed ID: 12779535 [TBL] [Abstract][Full Text] [Related]
16. On the global orbits in a bistable CML. Coutinho R; Fernandez B Chaos; 1997 Jun; 7(2):301-310. PubMed ID: 12779658 [TBL] [Abstract][Full Text] [Related]
17. Asynchronous updating of coupled maps leads to synchronization. Mehta M; Sinha S Chaos; 2000 Jun; 10(2):350-358. PubMed ID: 12779390 [TBL] [Abstract][Full Text] [Related]
18. Chaotic patterns in a coupled oscillator-excitator biochemical cell system. Schreiber I; Hasal P; Marek M Chaos; 1999 Mar; 9(1):43-54. PubMed ID: 12779800 [TBL] [Abstract][Full Text] [Related]
19. Scaling and interleaving of subsystem Lyapunov exponents for spatio-temporal systems. Carretero-Gonzalez R; Orstavik S; Huke J; Broomhead DS; Stark J Chaos; 1999 Jun; 9(2):466-482. PubMed ID: 12779843 [TBL] [Abstract][Full Text] [Related]
20. Exploring the role of diffusive coupling in spatiotemporal chaos. Raj A; Paul MR Chaos; 2024 Oct; 34(10):. PubMed ID: 39374436 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]