These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 12780285)

  • 1. Quantum chaos in nano-sized billiards in layered two-dimensional semiconductor structures.
    Berggren KF; Ji ZL
    Chaos; 1996 Dec; 6(4):543-553. PubMed ID: 12780285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum-chaotic scattering effects in semiconductor microstructures.
    Baranger HU; Jalabert RA; Stone AD
    Chaos; 1993 Oct; 3(4):665-682. PubMed ID: 12780071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kondo physics in carbon nanotubes.
    Nygård J; Cobden DH; Lindelof PE
    Nature; 2000 Nov; 408(6810):342-6. PubMed ID: 11099037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crossover from regular to irregular behavior in current flow through open billiards.
    Berggren KF; Sadreev AF; Starikov AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016218. PubMed ID: 12241472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Order and chaos in semiconductor microstructures.
    Lin WA; Delos JB; Jensen RV
    Chaos; 1993 Oct; 3(4):655-664. PubMed ID: 12780070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of level-spacing statistics in chaotic graphene billiards.
    Huang L; Lai YC; Grebogi C
    Chaos; 2011 Mar; 21(1):013102. PubMed ID: 21456816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crossover from 'mesoscopic' to 'universal' phase for electron transmission in quantum dots.
    Avinun-Kalish M; Heiblum M; Zarchin O; Mahalu D; Umansky V
    Nature; 2005 Jul; 436(7050):529-33. PubMed ID: 16049482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductance fluctuations and quantum chaotic scattering in semiconductor microstructures.
    Marcus CM; Westervelt RM; Hopkins PF; Gossard AC
    Chaos; 1993 Oct; 3(4):643-653. PubMed ID: 12780069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaotic Dirac billiard in graphene quantum dots.
    Ponomarenko LA; Schedin F; Katsnelson MI; Yang R; Hill EW; Novoselov KS; Geim AK
    Science; 2008 Apr; 320(5874):356-8. PubMed ID: 18420930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-coherent transport in graphene quantum billiards.
    Miao F; Wijeratne S; Zhang Y; Coskun UC; Bao W; Lau CN
    Science; 2007 Sep; 317(5844):1530-3. PubMed ID: 17872440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Open problems in active chaotic flows: Competition between chaos and order in granular materials.
    Ottino JM; Khakhar DV
    Chaos; 2002 Jun; 12(2):400-407. PubMed ID: 12779570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherent branched flow in a two-dimensional electron gas.
    Topinka MA; LeRoy BJ; Westervelt RM; Shaw SE; Fleischmann R; Heller EJ; Maranowski KD; Gossard AC
    Nature; 2001 Mar; 410(6825):183-6. PubMed ID: 11242072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unconventional critical behaviour in a quasi-two-dimensional organic conductor.
    Kagawa F; Miyagawa K; Kanoda K
    Nature; 2005 Jul; 436(7050):534-7. PubMed ID: 16049483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum transport through ballistic cavities: soft vs hard quantum chaos.
    Huckestein B; Ketzmerick R; Lewenkopf CH
    Phys Rev Lett; 2000 Jun; 84(24):5504-7. PubMed ID: 10990980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherent optical spectroscopy of a strongly driven quantum dot.
    Xu X; Sun B; Berman PR; Steel DG; Bracker AS; Gammon D; Sham LJ
    Science; 2007 Aug; 317(5840):929-32. PubMed ID: 17702938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regular and chaotic transport of impurities in steady flows.
    Vasiliev AA; Neishtadt AI
    Chaos; 1994 Dec; 4(4):673-680. PubMed ID: 12780144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaotic scattering, unstable periodic orbits, and fluctuations in quantum transport.
    Jensen RV
    Chaos; 1991 Jul; 1(1):101-109. PubMed ID: 12779901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational studies of semiconductor quantum dots.
    Lehtonen O; Sundholm D; Vänskä T
    Phys Chem Chem Phys; 2008 Aug; 10(31):4535-50. PubMed ID: 18665302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atypical quantum confinement effect in silicon nanowires.
    Sorokin PB; Avramov PV; Chernozatonskii LA; Fedorov DG; Ovchinnikov SG
    J Phys Chem A; 2008 Oct; 112(40):9955-64. PubMed ID: 18785695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collective Poisson process with periodic rates: applications in physics from micro-to nanodevices.
    da Silva R; Lamb LC; Wirth GI
    Philos Trans A Math Phys Eng Sci; 2011 Jan; 369(1935):307-21. PubMed ID: 21149373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.