These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 12780939)

  • 21. Quantification of the effect of electrical and thermal parameters on radiofrequency ablation for concentric tumour model of different sizes.
    Jamil M; Ng EY
    J Therm Biol; 2015 Jul; 51():23-32. PubMed ID: 25965014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coupled thermo-electro-mechanical models for thermal ablation of biological tissues and heat relaxation time effects.
    Singh S; Melnik R
    Phys Med Biol; 2019 Dec; 64(24):245008. PubMed ID: 31600740
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hepatic bipolar radio-frequency ablation between separated multiprong electrodes.
    Haemmerich D; Staelin ST; Tungjitkusolmun S; Lee FT; Mahvi DM; Webster JG
    IEEE Trans Biomed Eng; 2001 Oct; 48(10):1145-52. PubMed ID: 11585038
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of variation in perfusion rates and of perfusion models in computational models of radio frequency tumor ablation.
    Schutt DJ; Haemmerich D
    Med Phys; 2008 Aug; 35(8):3462-70. PubMed ID: 18777906
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the RF ablation-induced 'oven effect': the importance of background tissue thermal conductivity on tissue heating.
    Liu Z; Ahmed M; Weinstein Y; Yi M; Mahajan RL; Goldberg SN
    Int J Hyperthermia; 2006 Jun; 22(4):327-42. PubMed ID: 16754353
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of the electrical conductivity of human liver metastases: impact on therapy planning in the radiofrequency ablation of liver tumors.
    Zurbuchen U; Poch F; Gemeinhardt O; Kreis ME; Niehues SM; Vahldieck JL; Lehmann KS
    Acta Radiol; 2017 Feb; 58(2):164-169. PubMed ID: 27055920
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational modelling of internally cooled wet (ICW) electrodes for radiofrequency ablation: impact of rehydration, thermal convection and electrical conductivity.
    Trujillo M; Bon J; Berjano E
    Int J Hyperthermia; 2017 Sep; 33(6):624-634. PubMed ID: 28540782
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic control of finite element models for temperature-controlled radiofrequency ablation.
    Haemmerich D; Webster JG
    Biomed Eng Online; 2005 Jul; 4():42. PubMed ID: 16018811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probabilistic finite element method for large tumor radiofrequency ablation simulation and planning.
    Duan B; Wen R; Fu Y; Chua KJ; Chui CK
    Med Eng Phys; 2016 Nov; 38(11):1360-1368. PubMed ID: 27717595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bipolar radiofrequency ablation with four electrodes: ex vivo liver experiments and finite element method analysis. Influence of inter-electrode distance on coagulation size and geometry.
    Mulier S; Jiang Y; Wang C; Jamart J; Marchal G; Michel L; Ni Y
    Int J Hyperthermia; 2012; 28(7):686-97. PubMed ID: 22946490
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finite element modeling of cooled-tip probe radiofrequency ablation processes in liver tissue.
    Barauskas R; Gulbinas A; Vanagas T; Barauskas G
    Comput Biol Med; 2008 Jun; 38(6):694-708. PubMed ID: 18466889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensitivity of microwave ablation models to tissue biophysical properties: A first step toward probabilistic modeling and treatment planning.
    Sebek J; Albin N; Bortel R; Natarajan B; Prakash P
    Med Phys; 2016 May; 43(5):2649. PubMed ID: 27147374
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A piecewise function of resistivity of liver: determining parameters with finite element analysis of radiofrequency ablation.
    Possebon R; Jiang Y; Mulier S; Wang C; Chen F; Feng Y; Ni Y
    Med Biol Eng Comput; 2018 Mar; 56(3):385-394. PubMed ID: 28766106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of electrical and thermal properties on RF ablation of breast cancer: is the tumour preferentially heated?
    Ekstrand V; Wiksell H; Schultz I; Sandstedt B; Rotstein S; Eriksson A
    Biomed Eng Online; 2005 Jul; 4():41. PubMed ID: 16008834
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal modeling of lesion growth with radiofrequency ablation devices.
    Chang IA; Nguyen UD
    Biomed Eng Online; 2004 Aug; 3(1):27. PubMed ID: 15298708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasound simulation of real-time temperature estimation during radiofrequency ablation using finite element models.
    Daniels MJ; Jiang J; Varghese T
    Ultrasonics; 2008 Mar; 48(1):40-55. PubMed ID: 18082236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The electrical conductivity of in vivo human uterine fibroids.
    DeLonzor R; Spero RK; Williams JJ
    Int J Hyperthermia; 2011; 27(3):255-65. PubMed ID: 21501027
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-Dimensional finite-element analyses for radio-frequency hepatic tumor ablation.
    Tungjitkusolmun S; Staelin ST; Haemmerich D; Tsai JZ; Webster JG; Lee FT; Mahvi DM; Vorperian VR
    IEEE Trans Biomed Eng; 2002 Jan; 49(1):3-9. PubMed ID: 11797653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mathematical modeling of impedance controlled radiofrequency tumor ablation and ex-vivo validation.
    Haemmerich D
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1605-8. PubMed ID: 21096131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mathematical models based on transfer functions to estimate tissue temperature during RF cardiac ablation in real time.
    Alba-Martínez J; Trujillo M; Blasco-Gimenez R; Berjano E
    Open Biomed Eng J; 2012; 6():16-22. PubMed ID: 22715345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.