These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 12781032)

  • 1. Variation and significance of microtubules in rat volume overload cardiac hypertrophy.
    Liu H; Ma A; Wang C; Liu Y; Tian H; Bai L
    Chin Med J (Engl); 2003 Mar; 116(3):337-40. PubMed ID: 12781032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of microtubules in structural remodeling and the progression to heart failure.
    Roos KP; Palmer RE; Miller TW
    J Card Fail; 2002 Dec; 8(6 Suppl):S300-10. PubMed ID: 12555136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A study of microtubules in hypertrophied cardiomyocytes].
    Betsuyaku T
    Hokkaido Igaku Zasshi; 1994 Jan; 69(1):13-23. PubMed ID: 8119653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtubules modulate cardiomyocyte beta-adrenergic response in cardiac hypertrophy.
    Palmer BM; Valent S; Holder EL; Weinberger HD; Bies RD
    Am J Physiol; 1998 Nov; 275(5):H1707-16. PubMed ID: 9815078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microtubules modulate the stiffness of cardiomyocytes against shear stress.
    Nishimura S; Nagai S; Katoh M; Yamashita H; Saeki Y; Okada J; Hisada T; Nagai R; Sugiura S
    Circ Res; 2006 Jan; 98(1):81-7. PubMed ID: 16306445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overt expression of AP-1 reduces alpha myosin heavy chain expression and contributes to heart failure from chronic volume overload.
    Freire G; Ocampo C; Ilbawi N; Griffin AJ; Gupta M
    J Mol Cell Cardiol; 2007 Oct; 43(4):465-78. PubMed ID: 17720185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Influence of microtubule depolymerization of myocardial cells on mitochondria distribution and energy metabolism in adult rats].
    Dang YM; Fang YD; Hu JY; Zhang JP; Song HP; Zhang YM; Zhang Q; Huang YS
    Zhonghua Shao Shang Za Zhi; 2010 Feb; 26(1):18-22. PubMed ID: 20510029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtubules are involved in early hypertrophic responses of myocardium during pressure overload.
    Takahashi M; Tsutsui H; Tagawa H; Igarashi-Saito K; Imanaka-Yoshida K; Takeshita A
    Am J Physiol; 1998 Aug; 275(2):H341-8. PubMed ID: 9683419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological study of fibroblasts treated with cytochalasin D and colchicine using a confocal laser scanning microscopy.
    Ujihara Y; Miyazaki H; Wada S
    J Physiol Sci; 2008 Dec; 58(7):499-506. PubMed ID: 18928641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Study on injury to microtubule of cardiomyocytes at early post-hypoxia stage].
    Kuang Y; Huang YS
    Zhonghua Shao Shang Za Zhi; 2007 Jun; 23(3):172-4. PubMed ID: 18019053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basis for increased microtubules in pressure-hypertrophied cardiocytes.
    Tagawa H; Rozich JD; Tsutsui H; Narishige T; Kuppuswamy D; Sato H; McDermott PJ; Koide M; Cooper G
    Circulation; 1996 Mar; 93(6):1230-43. PubMed ID: 8653846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. K(ATP) activation prevents progression of cardiac hypertrophy to failure induced by pressure overload via protecting endothelial function.
    Gao S; Long CL; Wang RH; Wang H
    Cardiovasc Res; 2009 Aug; 83(3):444-56. PubMed ID: 19304734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of microtubules in contractile dysfunction of hypertrophied cardiocytes.
    Tsutsui H; Tagawa H; Kent RL; McCollam PL; Ishihara K; Nagatsu M; Cooper G
    Circulation; 1994 Jul; 90(1):533-55. PubMed ID: 8026043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenosine regulation of microtubule dynamics in cardiac hypertrophy.
    Fassett JT; Xu X; Hu X; Zhu G; French J; Chen Y; Bache RJ
    Am J Physiol Heart Circ Physiol; 2009 Aug; 297(2):H523-32. PubMed ID: 19525375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upregulation of heat shock transcription factor 1 plays a critical role in adaptive cardiac hypertrophy.
    Sakamoto M; Minamino T; Toko H; Kayama Y; Zou Y; Sano M; Takaki E; Aoyagi T; Tojo K; Tajima N; Nakai A; Aburatani H; Komuro I
    Circ Res; 2006 Dec; 99(12):1411-8. PubMed ID: 17095722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atrial natriuretic peptide behaviour and myocyte hypertrophic profile in combined pressure and volume-induced cardiac hypertrophy.
    Cavallero S; González GE; Puyó AM; Rosón MI; Pérez S; Morales C; Hertig CM; Gelpi RJ; Fernández BE
    J Hypertens; 2007 Sep; 25(9):1940-50. PubMed ID: 17762660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term activation of adenosine monophosphate-activated protein kinase attenuates pressure-overload-induced cardiac hypertrophy.
    Li HL; Yin R; Chen D; Liu D; Wang D; Yang Q; Dong YG
    J Cell Biochem; 2007 Apr; 100(5):1086-99. PubMed ID: 17266062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of ADP-ribosyl cyclase attenuates angiotensin II-induced cardiac hypertrophy.
    Gul R; Park JH; Kim SY; Jang KY; Chae JK; Ko JK; Kim UH
    Cardiovasc Res; 2009 Feb; 81(3):582-91. PubMed ID: 18719074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microtubule stabilization in pressure overload cardiac hypertrophy.
    Sato H; Nagai T; Kuppuswamy D; Narishige T; Koide M; Menick DR; Cooper G
    J Cell Biol; 1997 Nov; 139(4):963-73. PubMed ID: 9362514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EGCG inhibits cardiomyocyte apoptosis in pressure overload-induced cardiac hypertrophy and protects cardiomyocytes from oxidative stress in rats.
    Sheng R; Gu ZL; Xie ML; Zhou WX; Guo CY
    Acta Pharmacol Sin; 2007 Feb; 28(2):191-201. PubMed ID: 17241521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.