These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 12781145)

  • 21. Inositol 1,4,5-trisphosphate receptor contains multiple cavities and L-shaped ligand-binding domains.
    Sato C; Hamada K; Ogura T; Miyazawa A; Iwasaki K; Hiroaki Y; Tani K; Terauchi A; Fujiyoshi Y; Mikoshiba K
    J Mol Biol; 2004 Feb; 336(1):155-64. PubMed ID: 14741211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High efficient expression of the functional ligand binding site of the inositol 1,4,5-triphosphate receptor in Escherichia coli.
    Yoshikawa F; Uchiyama T; Iwasaki H; Tomomori-Satoh C; Tanaka T; Furuichi T; Mikoshiba K
    Biochem Biophys Res Commun; 1999 Apr; 257(3):792-7. PubMed ID: 10208862
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium signalling: how do IP3 receptors work?
    Dawson AP
    Curr Biol; 1997 Sep; 7(9):R544-7. PubMed ID: 9285705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Signal transduction. The calcium entry pas de deux.
    Berridge MJ; Lipp P; Bootman MD
    Science; 2000 Mar; 287(5458):1604-5. PubMed ID: 10733429
    [No Abstract]   [Full Text] [Related]  

  • 25. RACK1 binds to inositol 1,4,5-trisphosphate receptors and mediates Ca2+ release.
    Patterson RL; van Rossum DB; Barrow RK; Snyder SH
    Proc Natl Acad Sci U S A; 2004 Feb; 101(8):2328-32. PubMed ID: 14983009
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [IP3 receptor].
    Mikoshiba K; Furuichi T; Michikawa T; Yamamoto-Hino M; Hirashima C; Mizuno H; Inoue T; Uchiyama T
    Tanpakushitsu Kakusan Koso; 1998 Sep; 43(12 Suppl):1596-602. PubMed ID: 9788158
    [No Abstract]   [Full Text] [Related]  

  • 27. Trypsin digestion of the inositol trisphosphate receptor: implications for the conformation and domain organization of the protein.
    Joseph SK; Pierson S; Samanta S
    Biochem J; 1995 May; 307 ( Pt 3)(Pt 3):859-65. PubMed ID: 7741718
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ca2+ and calmodulin differentially modulate myo-inositol 1,4, 5-trisphosphate (IP3)-binding to the recombinant ligand-binding domains of the various IP3 receptor isoforms.
    Vanlingen S; Sipma H; De Smet P; Callewaert G; Missiaen L; De Smedt H; Parys JB
    Biochem J; 2000 Mar; 346 Pt 2(Pt 2):275-80. PubMed ID: 10677344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mini-dystrophin expression down-regulates overactivation of G protein-mediated IP3 signaling pathway in dystrophin-deficient muscle cells.
    Balghi H; Sebille S; Constantin B; Patri S; Thoreau V; Mondin L; Mok E; Kitzis A; Raymond G; Cognard C
    J Gen Physiol; 2006 Feb; 127(2):171-82. PubMed ID: 16446505
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional structure of the type 1 inositol 1,4,5-trisphosphate receptor at 24 A resolution.
    Jiang QX; Thrower EC; Chester DW; Ehrlich BE; Sigworth FJ
    EMBO J; 2002 Jul; 21(14):3575-81. PubMed ID: 12110570
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A dynamic model of the type-2 inositol trisphosphate receptor.
    Sneyd J; Dufour JF
    Proc Natl Acad Sci U S A; 2002 Feb; 99(4):2398-403. PubMed ID: 11842185
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The contribution of serine residues 1588 and 1755 to phosphorylation of the type I inositol 1,4,5-trisphosphate receptor by PKA and PKG.
    Soulsby MD; Alzayady K; Xu Q; Wojcikiewicz RJ
    FEBS Lett; 2004 Jan; 557(1-3):181-4. PubMed ID: 14741364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lateral inhibition of inositol 1,4,5-trisphosphate receptors by cytosolic Ca(2+).
    Adkins CE; Taylor CW
    Curr Biol; 1999 Oct; 9(19):1115-8. PubMed ID: 10531009
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid activation and partial inactivation of inositol trisphosphate receptors by inositol trisphosphate.
    Marchant JS; Taylor CW
    Biochemistry; 1998 Aug; 37(33):11524-33. PubMed ID: 9708988
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantal Ca2+ release and inactivation in a model of the inositol 1,4,5-trisphosphate receptor involving transformation of the ligand by the receptor.
    Kaimachnikov NP; Nazarenko VG
    Biosci Rep; 1996 Oct; 16(5):405-13. PubMed ID: 8913530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. IP3 receptor-operated calcium entry.
    Mikoshiba K; Hattori M
    Sci STKE; 2000 Sep; 2000(51):pe1. PubMed ID: 11752610
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inositol 1,4,5-trisphosphate receptor/Ca(2+) channel modulatory role of chromogranins A and B.
    Yoo SH; So SH; Huh YH; Park HY
    Ann N Y Acad Sci; 2002 Oct; 971():300-10. PubMed ID: 12438140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel role for calmodulin: Ca2+-independent inhibition of type-1 inositol trisphosphate receptors.
    Cardy TJ; Taylor CW
    Biochem J; 1998 Sep; 334 ( Pt 2)(Pt 2):447-55. PubMed ID: 9716504
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochemical characterization, distribution and phylogenetic analysis of Drosophila melanogaster ryanodine and IP3 receptors, and thapsigargin-sensitive Ca2+ ATPase.
    Vázquez-Martínez O; Cañedo-Merino R; Díaz-Muñoz M; Riesgo-Escovar JR
    J Cell Sci; 2003 Jun; 116(Pt 12):2483-94. PubMed ID: 12766186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TRP, inositol 1,4,5-trisphosphate receptors, and capacitative calcium entry.
    Putney JW
    Proc Natl Acad Sci U S A; 1999 Dec; 96(26):14669-71. PubMed ID: 10611268
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.