These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 12781225)

  • 1. Vitrification of lead-rich solid ashes from incineration of hazardous industrial wastes.
    Kavouras P; Kaimakamis G; Ioannidis TA; Kehagias T; Komninou P; Kokkou S; Pavlidou E; Antonopoulos I; Sofoniou M; Zouboulis A; Hadjiantoniou CP; Nouet G; Prakouras A; Karakostas T
    Waste Manag; 2003; 23(4):361-71. PubMed ID: 12781225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reuse of incinerator bottom and fly ashes to obtain glassy materials.
    Andreola F; Barbieri L; Hreglich S; Lancellotti I; Morselli L; Passarini F; Vassura I
    J Hazard Mater; 2008 May; 153(3):1270-4. PubMed ID: 17980961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glass-ceramic materials from electric arc furnace dust.
    Kavouras P; Kehagias T; Tsilika I; Kaimakamis G; Chrissafis K; Kokkou S; Papadopoulos D; Karakostas T
    J Hazard Mater; 2007 Jan; 139(3):424-9. PubMed ID: 16716504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of MSWI bottom ashes towards utilization as glass raw material.
    Monteiro RC; Figueiredo CF; Alendouro MS; Ferro MC; Davim EJ; Fernandes MH
    Waste Manag; 2008; 28(7):1119-25. PubMed ID: 17604153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitrified metal finishing wastes I. Composition, density and chemical durability.
    Bingham PA; Hand RJ
    J Hazard Mater; 2005 Mar; 119(1-3):125-33. PubMed ID: 15752857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Pb-rich and Fe-rich entities during alteration of a partially vitrified metallurgical waste.
    Seignez N; Gauthier A; Bulteel D; Buatier M; Recourt P; Damidot D; Potdevin JL
    J Hazard Mater; 2007 Oct; 149(2):418-31. PubMed ID: 17499917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment of waste printed wire boards in electronic waste for safe disposal.
    Niu X; Li Y
    J Hazard Mater; 2007 Jul; 145(3):410-6. PubMed ID: 17194533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the applicability of regulatory leaching tests for assessing the hazards of Pb-contaminated soils.
    Halim CE; Scott JA; Amal R; Short SA; Beydoun D; Low G; Cattle J
    J Hazard Mater; 2005 Apr; 120(1-3):101-11. PubMed ID: 15811670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leachability of automotive shredder residues burned in a fluidized bed system.
    Lopes MH; Freire M; Galhetas M; Gulyurtlu I; Cabrita I
    Waste Manag; 2009 May; 29(5):1760-5. PubMed ID: 19131234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal plasma technology for the treatment of wastes: a critical review.
    Gomez E; Rani DA; Cheeseman CR; Deegan D; Wise M; Boccaccini AR
    J Hazard Mater; 2009 Jan; 161(2-3):614-26. PubMed ID: 18499345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leaching behaviour of hazardous demolition waste.
    Roussat N; Méhu J; Abdelghafour M; Brula P
    Waste Manag; 2008 Nov; 28(11):2032-40. PubMed ID: 18160273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal behaviour of ESP ash from municipal solid waste incinerators.
    Yang Y; Xiao Y; Wilson N; Voncken JH
    J Hazard Mater; 2009 Jul; 166(1):567-75. PubMed ID: 19150174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective removal of lead and bromide from a hazardous industrial solid waste using Limited Acid Demand and Separation Factor at ambient conditions.
    Ioannidis TA; Zouboulis AI
    J Hazard Mater; 2006 Apr; 131(1-3):46-58. PubMed ID: 16310941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behaviour of antimony during thermal treatment of Sb-rich halogenated waste.
    Klein J; Dorge S; Trouvé G; Venditti D; Durécu S
    J Hazard Mater; 2009 Jul; 166(2-3):585-93. PubMed ID: 19167161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan.
    Chang CY; Wang CF; Mui DT; Cheng MT; Chiang HL
    J Hazard Mater; 2009 Jun; 165(1-3):766-73. PubMed ID: 19046804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical and physical properties of plasma slags containing various amorphous volume fractions.
    Kuo YM; Wang CT; Tsai CH; Wang LC
    J Hazard Mater; 2009 Feb; 162(1):469-75. PubMed ID: 18573600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rendering wastes obtained from gold analysis by the lead-fusion fire-assay method non-hazardous.
    Magalhães FB; de Freitas Carvalho C; Corrêa Netto Carvalho EL; Yoshida MI; Gouvêa dos-Santos C
    J Environ Manage; 2012 Nov; 110():110-5. PubMed ID: 22771892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator.
    Yang Y; Xiao Y; Voncken JH; Wilson N
    J Hazard Mater; 2008 Jun; 154(1-3):871-9. PubMed ID: 18077086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vitrification: an alternative to minimize environmental impact caused by leather industry wastes.
    Basegio T; Beck Leão AP; Bernardes AM; Bergmann CP
    J Hazard Mater; 2009 Jun; 165(1-3):604-11. PubMed ID: 19038494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaching behavior and immobilization of heavy metals in solidified/stabilized products.
    Malviya R; Chaudhary R
    J Hazard Mater; 2006 Sep; 137(1):207-17. PubMed ID: 16504383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.