These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 12781323)

  • 1. Cellular physiology of the neonatal rat cerebral cortex.
    Luhmann HJ; Hanganu I; Kilb W
    Brain Res Bull; 2003 May; 60(4):345-53. PubMed ID: 12781323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular physiology of the neonatal rat cerebral cortex: intrinsic membrane properties, sodium and calcium currents.
    Luhmann HJ; Reiprich RA; Hanganu I; Kilb W
    J Neurosci Res; 2000 Nov; 62(4):574-84. PubMed ID: 11070501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex.
    Meyer G; Soria JM; Martínez-Galán JR; Martín-Clemente B; Fairén A
    J Comp Neurol; 1998 Aug; 397(4):493-518. PubMed ID: 9699912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular morphology and physiology of the perinatal rat cerebral cortex.
    Luhmann HJ; Schubert D; Kötter R; Staiger JF
    Dev Neurosci; 1999 Nov; 21(3-5):298-309. PubMed ID: 10575253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changing patterns of synaptic input to subplate and cortical plate during development of visual cortex.
    Friauf E; Shatz CJ
    J Neurophysiol; 1991 Dec; 66(6):2059-71. PubMed ID: 1812236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP released from astrocytes modulates action potential threshold and spontaneous excitatory postsynaptic currents in the neonatal rat prefrontal cortex.
    Beamer E; Kovács G; Sperlágh B
    Brain Res Bull; 2017 Oct; 135():129-142. PubMed ID: 29030320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homogenous glycine receptor expression in cortical plate neurons and Cajal-Retzius cells of neonatal rat cerebral cortex.
    Okabe A; Kilb W; Shimizu-Okabe C; Hanganu IL; Fukuda A; Luhmann HJ
    Neuroscience; 2004; 123(3):715-24. PubMed ID: 14706783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Appearance of putative amino acid neurotransmitters during differentiation of neurons in embryonic turtle cerebral cortex.
    Blanton MG; Kriegstein AR
    J Comp Neurol; 1991 Aug; 310(4):571-92. PubMed ID: 1682348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cajal-Retzius and subplate neurons: their role in cortical development.
    Sarnat HB; Flores-Sarnat L
    Eur J Paediatr Neurol; 2002; 6(2):91-7. PubMed ID: 11995962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tangential migration of glutamatergic neurons and cortical patterning during development: Lessons from Cajal-Retzius cells.
    Barber M; Pierani A
    Dev Neurobiol; 2016 Aug; 76(8):847-81. PubMed ID: 26581033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of programmed cell death by distinct electrical activity patterns.
    Golbs A; Nimmervoll B; Sun JJ; Sava IE; Luhmann HJ
    Cereb Cortex; 2011 May; 21(5):1192-202. PubMed ID: 20966045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The noradrenergic system influences the fate of Cajal-Retzius cells in the developing cerebral cortex.
    Naqui SZ; Harris BS; Thomaidou D; Parnavelas JG
    Brain Res Dev Brain Res; 1999 Mar; 113(1-2):75-82. PubMed ID: 10064877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The subplate and early cortical circuits.
    Kanold PO; Luhmann HJ
    Annu Rev Neurosci; 2010; 33():23-48. PubMed ID: 20201645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of persistent postnatal cortical subplate neurons.
    Torres-Reveron J; Friedlander MJ
    J Neurosci; 2007 Sep; 27(37):9962-74. PubMed ID: 17855610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamate-like immunoreactivity and fate of Cajal-Retzius cells in the murine cortex as identified with calretinin antibody.
    del Río JA; Martínez A; Fonseca M; Auladell C; Soriano E
    Cereb Cortex; 1995; 5(1):13-21. PubMed ID: 7719127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of kynurenine aminotransferase in the subplate of the rat and its possible role in the regulation of programmed cell death.
    Csillik AE; Okuno E; Csillik B; Knyihár E; Vécsei L
    Cereb Cortex; 2002 Nov; 12(11):1193-201. PubMed ID: 12379607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early GABAergic circuitry in the cerebral cortex.
    Luhmann HJ; Kirischuk S; Sinning A; Kilb W
    Curr Opin Neurobiol; 2014 Jun; 26():72-8. PubMed ID: 24434608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cajal-Retzius cell ontogenesis and death in mouse brain visualized with horseradish peroxidase and electron microscopy.
    Derer P; Derer M
    Neuroscience; 1990; 36(3):839-56. PubMed ID: 2234416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ethanol exposure in utero on Cajal-Retzius cells in the developing cortex.
    Skorput AG; Yeh HH
    Alcohol Clin Exp Res; 2015 May; 39(5):853-62. PubMed ID: 25845402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Network activity and spike discharge oscillations in cortical slice cultures from neonatal rat.
    Czarnecki A; Tscherter A; Streit J
    Eur J Neurosci; 2012 Feb; 35(3):375-88. PubMed ID: 22276985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.