These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 1278138)
1. Phenacetin and the liver. The influence of phenacetin in acute and chronic doses on membrane-bound mitochondrial enzymes in the rat. Raab W; Kramar R; Moerth C Enzyme; 1976; 21(3):275-8. PubMed ID: 1278138 [TBL] [Abstract][Full Text] [Related]
2. An experimental study of acute and chronic effects of phenacetin on the rat kidney, using clinical-chemical and biochemical methods. Raab W; Kramar R; Moerth C Enzyme; 1976; 21(1):76-84. PubMed ID: 1244300 [TBL] [Abstract][Full Text] [Related]
3. Influence of L-thyroxine on kynurenine 3-hydroxylase, monoamine oxidase, and rotenone-insensitive NADH-cytochrome c reductase in mitochondrial outer membrane. Okamoto H Biochem Biophys Res Commun; 1971 May; 43(4):827-33. PubMed ID: 5563754 [No Abstract] [Full Text] [Related]
4. [Inhibition of enzymes of the internal mitochondrial membrane by benzbromarone]. Kramar R; Müller MM Experientia; 1973 Apr; 29(4):391-2. PubMed ID: 4145335 [No Abstract] [Full Text] [Related]
5. Crosslinking of membranes: the effect of dimethylsuberimidate, a bifunctional alkylating agent, on mitochondrial electron transport and ATPase. Tinberg HM; Nayudu PR; Packer L Arch Biochem Biophys; 1976 Feb; 172(2):734-40. PubMed ID: 130833 [No Abstract] [Full Text] [Related]
6. Surface change of biological membranes as a possible regulator of membrane-bound enzymes. Wojtczak L; Nałecz MJ Eur J Biochem; 1979 Feb; 94(1):99-107. PubMed ID: 35352 [No Abstract] [Full Text] [Related]
7. Inhibition of respiration by phenacetin in isolated tubules and mitochondria of rat kidney. Druery CJ; Dawson AG Biochem Pharmacol; 1979; 28(1):57-61. PubMed ID: 758911 [No Abstract] [Full Text] [Related]
9. NADH- and NADPH-linked aquacobalamin reductases occur in both mitochondrial and microsomal membranes of rat liver. Watanabe F; Nakano Y; Maruno S; Tachikake N; Tamura Y; Kitaoka S Biochem Biophys Res Commun; 1989 Dec; 165(2):675-9. PubMed ID: 2597154 [TBL] [Abstract][Full Text] [Related]
10. Reduction of tertiary amine N-oxides by rat liver mitochondria. Sugiura M; Kato R J Pharmacol Exp Ther; 1977 Jan; 200(1):25-32. PubMed ID: 13201 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of choline dehydrogenase activity in rat liver mitochondria by clofibrate feeding. Kramar R; Kremser K; Raab R Hoppe Seylers Z Physiol Chem; 1984 Oct; 365(10):1207-10. PubMed ID: 6394466 [TBL] [Abstract][Full Text] [Related]
12. Mitochondrial membrane-linked reactions in carcinogenesis: change in steroselective uncoupling of oxidative phosphorylation by aliphatic dicarbonyls and in the Arrhenius plot of NADH-indophenol reductase. Bryant GM; Argus MF; Arcos JC Gan; 1977 Feb; 68(1):89-98. PubMed ID: 405268 [TBL] [Abstract][Full Text] [Related]
13. [The role of inner membrane in the realization of cAMP-dependent activation of mitochondrial enzymes]. Medvedev AE; Trufanova LV; Golubenko AV; Kulinskiĭ VI Biokhimiia; 1990 Feb; 55(2):225-31. PubMed ID: 2160290 [TBL] [Abstract][Full Text] [Related]
14. The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. Lenaz G IUBMB Life; 2001; 52(3-5):159-64. PubMed ID: 11798028 [TBL] [Abstract][Full Text] [Related]
15. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study. Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422 [TBL] [Abstract][Full Text] [Related]