These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 1278138)

  • 1. Phenacetin and the liver. The influence of phenacetin in acute and chronic doses on membrane-bound mitochondrial enzymes in the rat.
    Raab W; Kramar R; Moerth C
    Enzyme; 1976; 21(3):275-8. PubMed ID: 1278138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental study of acute and chronic effects of phenacetin on the rat kidney, using clinical-chemical and biochemical methods.
    Raab W; Kramar R; Moerth C
    Enzyme; 1976; 21(1):76-84. PubMed ID: 1244300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of L-thyroxine on kynurenine 3-hydroxylase, monoamine oxidase, and rotenone-insensitive NADH-cytochrome c reductase in mitochondrial outer membrane.
    Okamoto H
    Biochem Biophys Res Commun; 1971 May; 43(4):827-33. PubMed ID: 5563754
    [No Abstract]   [Full Text] [Related]  

  • 4. [Inhibition of enzymes of the internal mitochondrial membrane by benzbromarone].
    Kramar R; Müller MM
    Experientia; 1973 Apr; 29(4):391-2. PubMed ID: 4145335
    [No Abstract]   [Full Text] [Related]  

  • 5. Crosslinking of membranes: the effect of dimethylsuberimidate, a bifunctional alkylating agent, on mitochondrial electron transport and ATPase.
    Tinberg HM; Nayudu PR; Packer L
    Arch Biochem Biophys; 1976 Feb; 172(2):734-40. PubMed ID: 130833
    [No Abstract]   [Full Text] [Related]  

  • 6. Surface change of biological membranes as a possible regulator of membrane-bound enzymes.
    Wojtczak L; Nałecz MJ
    Eur J Biochem; 1979 Feb; 94(1):99-107. PubMed ID: 35352
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibition of respiration by phenacetin in isolated tubules and mitochondria of rat kidney.
    Druery CJ; Dawson AG
    Biochem Pharmacol; 1979; 28(1):57-61. PubMed ID: 758911
    [No Abstract]   [Full Text] [Related]  

  • 8. Evidence for substrate-induced conformational changes in mitochondrial transhydrogenase.
    Blazyk JF; Fisher RR
    FEBS Lett; 1975 Feb; 50(2):227-32. PubMed ID: 234400
    [No Abstract]   [Full Text] [Related]  

  • 9. NADH- and NADPH-linked aquacobalamin reductases occur in both mitochondrial and microsomal membranes of rat liver.
    Watanabe F; Nakano Y; Maruno S; Tachikake N; Tamura Y; Kitaoka S
    Biochem Biophys Res Commun; 1989 Dec; 165(2):675-9. PubMed ID: 2597154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of tertiary amine N-oxides by rat liver mitochondria.
    Sugiura M; Kato R
    J Pharmacol Exp Ther; 1977 Jan; 200(1):25-32. PubMed ID: 13201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of choline dehydrogenase activity in rat liver mitochondria by clofibrate feeding.
    Kramar R; Kremser K; Raab R
    Hoppe Seylers Z Physiol Chem; 1984 Oct; 365(10):1207-10. PubMed ID: 6394466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial membrane-linked reactions in carcinogenesis: change in steroselective uncoupling of oxidative phosphorylation by aliphatic dicarbonyls and in the Arrhenius plot of NADH-indophenol reductase.
    Bryant GM; Argus MF; Arcos JC
    Gan; 1977 Feb; 68(1):89-98. PubMed ID: 405268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The role of inner membrane in the realization of cAMP-dependent activation of mitochondrial enzymes].
    Medvedev AE; Trufanova LV; Golubenko AV; Kulinskiĭ VI
    Biokhimiia; 1990 Feb; 55(2):225-31. PubMed ID: 2160290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology.
    Lenaz G
    IUBMB Life; 2001; 52(3-5):159-64. PubMed ID: 11798028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA
    J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intramitochondrial localization of fumarate reductase, NADPH----NAD transhydrogenase, 'malic' enzyme and fumarase in adult Hymenolepis diminuta.
    McKelvey JR; Fioravanti CF
    Mol Biochem Parasitol; 1985 Nov; 17(2):253-63. PubMed ID: 4069158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The orientation of transhydrogenase in the inner mitochondrial membrane of rat liver.
    Weis JK; Wu LN; Fisher RR
    Arch Biochem Biophys; 1987 Sep; 257(2):424-9. PubMed ID: 3662533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of monoamine oxidase activity by phenacetin and salicylamide.
    Byczkowski JZ; Korolkiewicz KZ
    Pharmacol Res Commun; 1976 Oct; 8(5):477-83. PubMed ID: 1026969
    [No Abstract]   [Full Text] [Related]  

  • 19. Urinary enzymes and kidney damage by aspirin and phenacetin.
    Plummer DT; Leathwood PD; Blake ME
    Chem Biol Interact; 1975 Apr; 10(4):277-84. PubMed ID: 1122562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the surface potential on the Michaelis constant of membrane-bound enzymes: effect of membrane solubilization.
    Wojtczak L; Famulski KS; Nałecz MJ; Zborowski J
    FEBS Lett; 1982 Mar; 139(2):221-4. PubMed ID: 6281066
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.