BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 12781461)

  • 1. Advantages of Thermococcus kodakaraenis (KOD) DNA Polymerase for PCR-mass spectrometry based analyses.
    Benson LM; Null AP; Muddiman DC
    J Am Soc Mass Spectrom; 2003 Jun; 14(6):601-4. PubMed ID: 12781461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal conditions and specific characteristics of Vent exo- DNA polymerase in ligation-mediated polymerase chain reaction protocols.
    Vigneault F; Drouin R
    Biochem Cell Biol; 2005 Apr; 83(2):147-65. PubMed ID: 15864324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved PCR performance using mutant Tpa-S DNA polymerases from the hyperthermophilic archaeon Thermococcus pacificus.
    Ppyun H; Kim I; Cho SS; Seo KJ; Yoon K; Kwon ST
    J Biotechnol; 2012 Dec; 164(2):363-70. PubMed ID: 23395617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overview of thermostable DNA polymerases for classical PCR applications: from molecular and biochemical fundamentals to commercial systems.
    Terpe K
    Appl Microbiol Biotechnol; 2013 Dec; 97(24):10243-54. PubMed ID: 24177730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a family B DNA polymerase from Thermococcus barophilus Ch5 and its application for long and accurate PCR.
    Kwon KM; Kang SG; Sokolova TG; Cho SS; Kim YJ; Kim CH; Kwon ST
    Enzyme Microb Technol; 2016 May; 86():117-26. PubMed ID: 26992800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical properties and PCR performance of a family B DNA polymerase from hyperthermophilic Euryarchaeon Thermococcus peptonophilus.
    Lee JI; Kim YJ; Bae H; Cho SS; Lee JH; Kwon ST
    Appl Biochem Biotechnol; 2010 Mar; 160(6):1585-99. PubMed ID: 19440663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and PCR application of a new high-fidelity DNA polymerase from Thermococcus waiotapuensis.
    Cho SS; Kim KP; Lee KK; Youn MH; Kwon ST
    Enzyme Microb Technol; 2012 Dec; 51(6-7):334-41. PubMed ID: 23040388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro replication slippage by DNA polymerases from thermophilic organisms.
    Viguera E; Canceill D; Ehrlich SD
    J Mol Biol; 2001 Sep; 312(2):323-33. PubMed ID: 11554789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning, expression, and PCR application of DNA polymerase from the hyperthermophilic archaeon, Thermococcus celer.
    Kim KP; Bae H; Kim IH; Kwon ST
    Biotechnol Lett; 2011 Feb; 33(2):339-46. PubMed ID: 20953664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genotyping short tandem repeats using flow injection and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.
    Hannis JC; Muddiman DC
    Rapid Commun Mass Spectrom; 2001; 15(5):348-50. PubMed ID: 11241765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal conditions to use Pfu exo(-) DNA polymerase for highly efficient ligation-mediated polymerase chain reaction protocols.
    Angers M; Cloutier JF; Castonguay A; Drouin R
    Nucleic Acids Res; 2001 Aug; 29(16):E83. PubMed ID: 11504891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fidelity of Thermococcus litoralis DNA polymerase (Vent) in PCR determined by denaturing gradient gel electrophoresis.
    Cariello NF; Swenberg JA; Skopek TR
    Nucleic Acids Res; 1991 Aug; 19(15):4193-8. PubMed ID: 1870973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Isolation and characterization of the thermostable DNA polymerase of the hyperthermophilic archaeum Thermococcus litoralis Sh1AM].
    Prikl Biokhim Mikrobiol; 2005; 41(1):40-7. PubMed ID: 15810731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a dUTPase from the hyperthermophilic archaeon Thermococcus onnurineus NA1 and its application in polymerase chain reaction amplification.
    Cho Y; Lee HS; Kim YJ; Kang SG; Kim SJ; Lee JH
    Mar Biotechnol (NY); 2007; 9(4):450-8. PubMed ID: 17549447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the processivity of a family B-type DNA polymerase of Thermococcus onnurineus and application to long PCR.
    Kim YJ; Lee HS; Kwon ST; Lee JH; Kang SG
    Biotechnol Lett; 2014 May; 36(5):985-92. PubMed ID: 24375236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of non-templated nucleotide addition by DNA polymerases in primer extension using twisted intercalating nucleic acid modified templates.
    Güixens-Gallardo P; Hocek M; Perlíková P
    Bioorg Med Chem Lett; 2016 Jan; 26(2):288-291. PubMed ID: 26707394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of PCR products from bacilli using electrospray ionization FTICR mass spectrometry.
    Muddiman DC; Wunschel DS; Liu C; Pasa-Tolić L; Fox KF; Fox A; Anderson GA; Smith RD
    Anal Chem; 1996 Nov; 68(21):3705-12. PubMed ID: 8914480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of double-stranded polymerase chain reaction products from the Bacillus cereus group by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.
    Wunschel DS; Fox KF; Fox A; Bruce JE; Muddiman DC; Smith RD
    Rapid Commun Mass Spectrom; 1996; 10(1):29-35. PubMed ID: 8563015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precise mass measurement of a double-stranded 500 base-pair (309 kDa) polymerase chain reaction product by negative ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.
    Muddiman DC; Null AP; Hannis JC
    Rapid Commun Mass Spectrom; 1999 Jun; 13(12):1201-1204. PubMed ID: 10407297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of mutations using PCR and denaturing gradient gel electrophoresis.
    Cariello NF; Swenberg JA; De Bellis A; Skopek TR
    Environ Mol Mutagen; 1991; 18(4):249-54. PubMed ID: 1748086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.