These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 12781781)

  • 1. Solution structure of the third extracellular loop of human thromboxane A2 receptor.
    Wu J; So SP; Ruan KH
    Arch Biochem Biophys; 2003 Jun; 414(2):287-93. PubMed ID: 12781781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structure of the second extracellular loop of human thromboxane A2 receptor.
    Ruan KH; So SP; Wu J; Li D; Huang A; Kung J
    Biochemistry; 2001 Jan; 40(1):275-80. PubMed ID: 11141080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of residues important for ligand binding of thromboxane A2 receptor in the second extracellular loop using the NMR experiment-guided mutagenesis approach.
    So SP; Wu J; Huang G; Huang A; Li D; Ruan KH
    J Biol Chem; 2003 Mar; 278(13):10922-7. PubMed ID: 12551898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A strategy using NMR peptide structures of thromboxane A2 receptor as templates to construct ligand-recognition pocket of prostacyclin receptor.
    Ruan CH; Wu J; Ruan KH
    BMC Biochem; 2005 Nov; 6():23. PubMed ID: 16271145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of the residues involved in ligand recognition in the second extracellular loop of the prostacyclin receptor characterized by high resolution 2D NMR techniques.
    Ruan KH; Wu J; So SP; Jenkins LA
    Arch Biochem Biophys; 2003 Oct; 418(1):25-33. PubMed ID: 13679079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR structure of the thromboxane A2 receptor ligand recognition pocket.
    Ruan KH; Wu J; So SP; Jenkins LA; Ruan CH
    Eur J Biochem; 2004 Jul; 271(14):3006-16. PubMed ID: 15233797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structures of the intradiskal loops and amino terminus of the G-protein receptor, rhodopsin.
    Yeagle PL; Salloum A; Chopra A; Bhawsar N; Ali L; Kuzmanovski G; Alderfer JL; Albert AD
    J Pept Res; 2000 Jun; 55(6):455-65. PubMed ID: 10888202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed mutagenesis of cysteinyl and serine residues of human thromboxane A2 receptor in insect cells.
    Chiang N; Kan WM; Tai HH
    Arch Biochem Biophys; 1996 Oct; 334(1):9-17. PubMed ID: 8837733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural determinants for agonist binding affinity to thromboxane/prostaglandin endoperoxide (TP) receptors. Analysis of chimeric rat/human TP receptors.
    Dorn GW; Davis MG; D'Angelo DD
    J Biol Chem; 1997 May; 272(19):12399-405. PubMed ID: 9139686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Labeling of human platelet plasma membrane thromboxane A2/prostaglandin H2 receptors using SQB, a novel biotinylated receptor probe.
    Komiotis D; Wencel-Drake JD; Dieter JP; Lim CT; Le Breton GC
    Biochem Pharmacol; 1996 Sep; 52(5):763-70. PubMed ID: 8765474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembling NMR structures for the intracellular loops of the human thromboxane A2 receptor: implication of the G protein-coupling pocket.
    Wu J; Feng M; Ruan KH
    Arch Biochem Biophys; 2008 Feb; 470(1):73-82. PubMed ID: 18073117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure determination of the fourth cytoplasmic loop and carboxyl terminal domain of bovine rhodopsin.
    Yeagle PL; Alderfer JL; Albert AD
    Mol Vis; 1996 Dec; 2():12. PubMed ID: 9238089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping of a ligand-binding site for the human thromboxane A2 receptor protein.
    Turek JW; Halmos T; Sullivan NL; Antonakis K; Le Breton GC
    J Biol Chem; 2002 May; 277(19):16791-7. PubMed ID: 11877412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the membrane contact residues and solution structure of the helix F/G loop of prostaglandin I2 synthase.
    Wu J; So SP; Ruan KH
    Arch Biochem Biophys; 2003 Mar; 411(1):27-35. PubMed ID: 12590920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opioid receptor three-dimensional structures from distance geometry calculations with hydrogen bonding constraints.
    Pogozheva ID; Lomize AL; Mosberg HI
    Biophys J; 1998 Aug; 75(2):612-34. PubMed ID: 9675164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutagenic analysis of platelet thromboxane receptor cysteines. Roles in ligand binding and receptor-effector coupling.
    D'Angelo DD; Eubank JJ; Davis MG; Dorn GW
    J Biol Chem; 1996 Mar; 271(11):6233-40. PubMed ID: 8626415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization by NMR and molecular modeling of the binding of polyisoprenols and polyisoprenyl recognition sequence peptides: 3D structure of the complexes reveals sites of specific interactions.
    Zhou GP; Troy FA
    Glycobiology; 2003 Feb; 13(2):51-71. PubMed ID: 12626407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the third cytoplasmic loop of bovine rhodopsin.
    Yeagle PL; Alderfer JL; Albert AD
    Biochemistry; 1995 Nov; 34(45):14621-5. PubMed ID: 7578070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First principles predictions of the structure and function of g-protein-coupled receptors: validation for bovine rhodopsin.
    Trabanino RJ; Hall SE; Vaidehi N; Floriano WB; Kam VW; Goddard WA
    Biophys J; 2004 Apr; 86(4):1904-21. PubMed ID: 15041637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The solution structure of the synthetic circular peptide CGVSRQGKPYC. NMR studies of the folding of a synthetic model for the DNA-binding loop of the ssDNA-binding protein encoded by gene V of phage M13.
    Rietman BH; Folkers PJ; Folmer RH; Tesser GI; Hilbers CW
    Eur J Biochem; 1996 Jun; 238(3):706-13. PubMed ID: 8706671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.