BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 12781787)

  • 1. Ventrally emigrating neural tube cells migrate into the developing vestibulocochlear nerve and otic vesicle.
    Ali MM; Jayabalan S; Machnicki M; Sohal GS
    Int J Dev Neurosci; 2003 Jun; 21(4):199-208. PubMed ID: 12781787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The myth of ventrally emigrating neural tube (VENT) cells and their contribution to the developing cardiovascular system.
    Boot MJ; Gittenberger-de Groot AC; van Iperen L; Poelmann RE
    Anat Embryol (Berl); 2003 Mar; 206(4):327-33. PubMed ID: 12649731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the hindbrain in patterning the otic vesicle: a study of the zebrafish vhnf1 mutant.
    Lecaudey V; Ulloa E; Anselme I; Stedman A; Schneider-Maunoury S; Pujades C
    Dev Biol; 2007 Mar; 303(1):134-43. PubMed ID: 17137573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A second source of precursor cells for the developing enteric nervous system and interstitial cells of Cajal.
    Sohal GS; Ali MM; Farooqui FA
    Int J Dev Neurosci; 2002 Dec; 20(8):619-26. PubMed ID: 12526892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. No evidence for ventrally migrating neural tube cells from the mid- and hindbrain.
    Yaneza M; Gilthorpe JD; Lumsden A; Tucker AS
    Dev Dyn; 2002 Jan; 223(1):163-7. PubMed ID: 11803580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ventrally emigrating neural tube cells contribute to the formation of Meckel's and quadrate cartilage.
    Sohal GS; Ali MM; Ali AA; Dai D
    Dev Dyn; 1999 Sep; 216(1):37-44. PubMed ID: 10474164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ventrally emigrating neural tube (VENT) cells: a second neural tube-derived cell population.
    Dickinson DP; Machnicki M; Ali MM; Zhang Z; Sohal GS
    J Anat; 2004 Aug; 205(2):79-98. PubMed ID: 15291792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct roles for hindbrain and paraxial mesoderm in the induction and patterning of the inner ear revealed by a study of vitamin-A-deficient quail.
    Kil SH; Streit A; Brown ST; Agrawal N; Collazo A; Zile MH; Groves AK
    Dev Biol; 2005 Sep; 285(1):252-71. PubMed ID: 16039643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ventrally emigrating neural tube cells differentiate into vascular smooth muscle cells.
    Ali AA; Ali MM; Dai D; Sohal GS
    Gen Pharmacol; 1999 Nov; 33(5):401-5. PubMed ID: 10553881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual embryonic origin of the mammalian otic vesicle forming the inner ear.
    Freyer L; Aggarwal V; Morrow BE
    Development; 2011 Dec; 138(24):5403-14. PubMed ID: 22110056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emigration of neuroepithelial cells from the hindbrain neural tube in the chick embryo.
    Sohal GS; Ali MM; Galileo DS; Ali AA
    Int J Dev Neurosci; 1998 Oct; 16(6):477-81. PubMed ID: 9881296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Invagination of the otic placode: normal development and experimental manipulation.
    Hilfer SR; Esteves RA; Sanzo JF
    J Exp Zool; 1989 Aug; 251(2):253-64. PubMed ID: 2769204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmental migration of the hindbrain neural crest does not arise from its segmental generation.
    Sechrist J; Serbedzija GN; Scherson T; Fraser SE; Bronner-Fraser M
    Development; 1993 Jul; 118(3):691-703. PubMed ID: 7521280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular differentiation of the otic vesicle and neural tube in the chick embryo demonstrated by monoclonal antibodies.
    Obata K; Tanaka H
    Neurosci Res; 1988 Dec; 6(2):131-42. PubMed ID: 3217051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ventrally emigrating neural tube cells contribute to the normal development of heart and great vessels.
    Ali MM; Farooqui FA; Sohal GS
    Vascul Pharmacol; 2003 Feb; 40(2):133-40. PubMed ID: 12646402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of Pax2 and patterning of the chick inner ear.
    Hutson MR; Lewis JE; Nguyen-Luu D; Lindberg KH; Barald KF
    J Neurocytol; 1999; 28(10-11):795-807. PubMed ID: 10900085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shaping, invagination, and closure of the chick embryo otic vesicle: scanning electron microscopic and quantitative study.
    Alvarez IS; Navascués J
    Anat Rec; 1990 Nov; 228(3):315-26. PubMed ID: 2260786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signaling regulating inner ear development: cell fate determination, patterning, morphogenesis, and defects.
    Nakajima Y
    Congenit Anom (Kyoto); 2015 Feb; 55(1):17-25. PubMed ID: 25040109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of mouse kreisler mutants reveals new roles of hindbrain-derived signals in the establishment of the otic neurogenic domain.
    Vázquez-Echeverría C; Dominguez-Frutos E; Charnay P; Schimmang T; Pujades C
    Dev Biol; 2008 Oct; 322(1):167-78. PubMed ID: 18703040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fgf3 is required for dorsal patterning and morphogenesis of the inner ear epithelium.
    Hatch EP; Noyes CA; Wang X; Wright TJ; Mansour SL
    Development; 2007 Oct; 134(20):3615-25. PubMed ID: 17855431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.