These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 12781914)

  • 61. Acetyl-CoA carboxylase control of fatty acid oxidation in hearts from hibernating Richardson's ground squirrels.
    Belke DD; Wang LC; Lopaschuk GD
    Biochim Biophys Acta; 1998 Mar; 1391(1):25-36. PubMed ID: 9518540
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Seasonal changes in the isoform composition of the myosin heavy chains in skeletal muscles of hibernating ground squirrels Spermophilus undulatus].
    Lazareva MV; Trapeznikova KO; Vikhliantsev IM; Bobylev AG; Klimov AA; Podlubnaia ZA
    Biofizika; 2012; 57(6):982-7. PubMed ID: 23272578
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Uridine uptake and RNA synthesis in the brain of torpid and awakened ground squirrels.
    Bocharova LS; Gordon RYa ; Arkhipov VI
    Comp Biochem Physiol B; 1992; 101(1-2):189-92. PubMed ID: 1379896
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Evidence for a reduced transcriptional state during hibernation in ground squirrels.
    Morin P; Storey KB
    Cryobiology; 2006 Dec; 53(3):310-8. PubMed ID: 16979617
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Electrocardiogram of the arctic ground squirrel during hibernation and hypothermia.
    NARDONE RM
    Am J Physiol; 1955 Aug; 182(2):364-8. PubMed ID: 13258816
    [No Abstract]   [Full Text] [Related]  

  • 66. Adrenergic receptor density in brown adipose tissue of active and hibernating hamsters and ground squirrels.
    Kramarova LI; Bronnikov GE; Ignat'ev DA; Cannon B; Nedergaard J
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Mar; 146(3):408-14. PubMed ID: 17208026
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The brain 5-HT1A receptor gene expression in hibernation.
    Naumenko VS; Tkachev SE; Kulikov AV; Semenova TP; Amerhanov ZG; Smirnova NP; Popova NK
    Genes Brain Behav; 2008 Apr; 7(3):300-5. PubMed ID: 17711450
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The effects of nickel chloride on papillary muscle contractility under normothermic and hypothermic conditions: Comparison of active and hibernating ground squirrels (Urocitellus undulatus) with Wistar rats.
    Averin AS; Storey KB; Nenov MN
    J Therm Biol; 2024 Jan; 119():103785. PubMed ID: 38320933
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Autoradiographic patterns of hippocampal metabolism during induced hypothermia.
    George CP; Kilduff TS; Sharp FR; Heller HC
    Neurosci Lett; 1982 Dec; 34(3):233-9. PubMed ID: 7162705
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effect of the transplanted thymus of hibernating ground squirrels on the age-related thymus involution in rats.
    Novoselova EG; Kulikov AV; Glushkova OV; Cherenkov DA; Smirnova GN; Arkhipova LV
    Dokl Biol Sci; 2004; 397():272-3. PubMed ID: 15508571
    [No Abstract]   [Full Text] [Related]  

  • 71. Hymenolepis citelli: development and chemical composition in hypothermic ground squirrels.
    Ford BR
    Exp Parasitol; 1972 Aug; 32(1):62-70. PubMed ID: 5049759
    [No Abstract]   [Full Text] [Related]  

  • 72. Comparative physiological and biochemical aspects of hypothermia as a model for hibernation.
    Musacchia XJ
    Cryobiology; 1984 Dec; 21(6):583-92. PubMed ID: 6518801
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Endogenous hypometabolic-hypothermic factors and their possible application to life in the cold].
    Kramarova LI; Ziganshin RKh; Gakhova EN
    Bioorg Khim; 2009; 35(5):597-609. PubMed ID: 19915637
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Seasonal differences in the morphology and spine density of hippocampal neurons in wild ground squirrels.
    Brinkman B; Ngwenya A; Fjordbotten K; Stephen O; Iwaniuk AN
    Brain Struct Funct; 2022 Sep; 227(7):2349-2365. PubMed ID: 35869305
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Daily Torpor and Sleep in a Non-human Primate, the Gray Mouse Lemur (
    Royo J; Aujard F; Pifferi F
    Front Neuroanat; 2019; 13():87. PubMed ID: 31616258
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Hibernation Impairs Odor Discrimination - Implications for Alzheimer's Disease.
    Bullmann T; Feneberg E; Kretzschmann TP; Ogunlade V; Holzer M; Arendt T
    Front Neuroanat; 2019; 13():69. PubMed ID: 31379517
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Sex-specific effects of food supplementation on hibernation performance and reproductive timing in free-ranging common hamsters.
    Siutz C; Valent M; Ammann V; Niebauer A; Millesi E
    Sci Rep; 2018 Aug; 8(1):13082. PubMed ID: 30166598
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effects of food store quality on hibernation performance in common hamsters.
    Siutz C; Nemeth M; Wagner KH; Quint R; Ruf T; Millesi E
    PLoS One; 2017; 12(10):e0185913. PubMed ID: 29045417
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Torpor patterns in common hamsters with and without access to food stores.
    Siutz C; Millesi E
    J Comp Physiol B; 2017 Jul; 187(5-6):881-888. PubMed ID: 28417150
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Brain hypometabolism triggers PHF-like phosphorylation of tau, a major hallmark of Alzheimer's disease pathology.
    Arendt T; Stieler J; Holzer M
    J Neural Transm (Vienna); 2015 Apr; 122(4):531-9. PubMed ID: 25480630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.