These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 12782094)

  • 41. Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving.
    Mohamed Abd El-Aziz T; Garcia Soares A; Stockand JD
    Toxins (Basel); 2019 Sep; 11(10):. PubMed ID: 31557973
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The anti-snake venom activities of the methanolic extract of the bulb of Crinum jagus (Amaryllidaceae).
    Ode OJ; Asuzu IU
    Toxicon; 2006 Sep; 48(3):331-42. PubMed ID: 16890262
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aqueous Leaf Extract of
    Gomes JA; Félix-Silva J; Morais Fernandes J; Geraldo Amaral J; Lopes NP; Tabosa do Egito ES; da Silva-Júnior AA; Maria Zucolotto S; Fernandes-Pedrosa MF
    Biomed Res Int; 2016; 2016():6101742. PubMed ID: 27847818
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thrombin-like and fibrinolytic enzymes in the venoms from the Gaboon viper (Bitis gabonica), eastern cottonmouth moccasin (Agkistrodon p. piscivorus) and southern copperhead (Agkistrodon c. contortrix) snakes.
    Bajwa SS; Kirakossian H; Reddy KN; Markland FS
    Toxicon; 1982; 20(2):427-32. PubMed ID: 7043785
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Factor X converting and thrombin-like activities of Bothrops jararaca snake venom.
    Furukawa Y; Hayashi K
    Toxicon; 1977; 15(2):97-105. PubMed ID: 854938
    [No Abstract]   [Full Text] [Related]  

  • 46. Anticoagulant effects of Pseudechis australis (Australian king brown snake) venom on human blood: a computerized thromboelastography study.
    Dambisya YM; Lee TL; Gopalakrishnakone P
    Toxicon; 1995 Oct; 33(10):1378-82. PubMed ID: 8599189
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Investigation of skin permeation, ex vivo inhibition of venom-induced tissue destruction, and wound healing of African plants used against snakebites.
    Molander M; Staerk D; Mørck Nielsen H; Brandner JM; Diallo D; Kusamba Zacharie C; van Staden J; Jäger AK
    J Ethnopharmacol; 2015 May; 165():1-8. PubMed ID: 25681542
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biological activities of Peristrophe bivalvis extracts: promising potential for anti-snake venoms against Naja kaouthia and Trimeresurus albolabris venoms.
    Phaopongthai J; Noiphrom J; Phaopongthai S; Pakmanee N; Sichaem J
    Nat Prod Res; 2016; 30(6):697-9. PubMed ID: 25942501
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Therapeutic defibrination by Bothrops marajoensis-venom.
    Matsuda T; Hideno K; Ogawara M; Kodama N; Murakami M
    Nihon Ketsueki Gakkai Zasshi; 1975 Jun; 38(3):299-305. PubMed ID: 1243223
    [No Abstract]   [Full Text] [Related]  

  • 50. Preliminary antinociceptive, antioxidant and cytotoxic activities of Leucas aspera root.
    Rahman MS; Sadhu SK; Hasan CM
    Fitoterapia; 2007 Dec; 78(7-8):552-5. PubMed ID: 17651917
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Procoagulant activities in venoms from central Asian snakes.
    Yukelson LY; Tans G; Thomassen MC; Hemker HC; Rosing J
    Toxicon; 1991; 29(4-5):491-502. PubMed ID: 1830705
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inhibitory effect of tea polyphenols on local tissue damage induced by snake venoms.
    Pithayanukul P; Leanpolchareanchai J; Bavovada R
    Phytother Res; 2010 Jan; 24 Suppl 1():S56-62. PubMed ID: 19585481
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Snake venom proteins in hemostasis: new results].
    Stocker K; Meier J
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1989; 116(6):935-53. PubMed ID: 2483713
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of five Thai snake venoms on coagulation, fibrinolysis and platelet aggregation.
    Mitrakul C
    Southeast Asian J Trop Med Public Health; 1979 Jun; 10(2):266-75. PubMed ID: 524153
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fruit Bagasse Phytochemicals from Malpighia Emarginata Rich in Enzymatic Inhibitor with Modulatory Action on Hemostatic Processes.
    Marques TR; Cesar PHS; Braga MA; Marcussi S; Corrêa AD
    J Food Sci; 2018 Nov; 83(11):2840-2849. PubMed ID: 30334251
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hemostatic properties of Venezuelan Bothrops snake venoms with special reference to Bothrops isabelae venom.
    Rodríguez-Acosta A; Sánchez EE; Márquez A; Carvajal Z; Salazar AM; Girón ME; Estrella A; Gil A; Guerrero B
    Toxicon; 2010 Nov; 56(6):926-35. PubMed ID: 20600222
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Snake venoms affecting the haemostatic mechanism--a consideration of their mechanisms, practical applications and biological significance.
    Marsh NA
    Blood Coagul Fibrinolysis; 1994 Jun; 5(3):399-410. PubMed ID: 8075311
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of snake venom components acting on blood coagulation and platelet function.
    Ouyang C; Teng CM; Huang TF
    Toxicon; 1992 Sep; 30(9):945-66. PubMed ID: 1440652
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Snake venoms and haemostasis: some suggested mechanisms of action.
    Gaffney PJ; Marsh NA; Talalak P
    Southeast Asian J Trop Med Public Health; 1979 Jun; 10(2):258-65. PubMed ID: 524152
    [No Abstract]   [Full Text] [Related]  

  • 60. Diversity of Micrurus snake species related to their venom toxic effects and the prospective of antivenom neutralization.
    Tanaka GD; Furtado Mde F; Portaro FC; Sant'Anna OA; Tambourgi DV
    PLoS Negl Trop Dis; 2010 Mar; 4(3):e622. PubMed ID: 20231886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.