These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 12782151)

  • 1. Long-chain fatty acyl-CoA esters induce lipase activation in the absence of a water-lipid interface.
    Bañó MC; González-Navarro H; Abad C
    Biochim Biophys Acta; 2003 Jun; 1632(1-3):55-61. PubMed ID: 12782151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The closed/open model for lipase activation. Addressing intermediate active forms of fungal enzymes by trapping of conformers in water-restricted environments.
    González-Navarro H; Bañó MC; Abad C
    Biochemistry; 2001 Mar; 40(10):3174-83. PubMed ID: 11258933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of various kinds of esters by four microbial lipases.
    Okumura S; Iwai M; Tsujisaka Y
    Biochim Biophys Acta; 1979 Oct; 575(1):156-65. PubMed ID: 508776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipase-catalysed hydrolysis of short-chain substrates in solution and in emulsion: a kinetic study.
    Nini L; Sarda L; Comeau LC; Boitard E; Dubès JP; Chahinian H
    Biochim Biophys Acta; 2001 Nov; 1534(1):34-44. PubMed ID: 11750885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate specificities of lipases A and B from Geotrichum candidum CMICC 335426.
    Charton E; Macrae AR
    Biochim Biophys Acta; 1992 Jan; 1123(1):59-64. PubMed ID: 1730047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural determinants defining common stereoselectivity of lipases toward secondary alcohols.
    Cygler M; Grochulski P; Schrag JD
    Can J Microbiol; 1995; 41 Suppl 1():289-96. PubMed ID: 7606666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the molecular basis for fatty acyl specificities of lipases from Geotrichum candidum and Candida rugosa.
    Holmquist M
    Chem Phys Lipids; 1998 Jun; 93(1-2):57-66. PubMed ID: 9720250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: increased thermostability and altered acyl chain length specificity.
    Yu XW; Tan NJ; Xiao R; Xu Y
    PLoS One; 2012; 7(10):e46388. PubMed ID: 23056295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic fatty acid exchange in digalactosyldiacylglycerol.
    Persson M; Svensson I; Adlercreutz P
    Chem Phys Lipids; 2000 Jan; 104(1):13-21. PubMed ID: 10660208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial lipases.
    Jaeger KE; Ransac S; Dijkstra BW; Colson C; van Heuvel M; Misset O
    FEMS Microbiol Rev; 1994 Sep; 15(1):29-63. PubMed ID: 7946464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glyceride synthesis by four kinds of microbial lipase.
    Tsujisaka Y; Okumura S; Iwai M
    Biochim Biophys Acta; 1977 Dec; 489(3):415-22. PubMed ID: 563245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Met93 and Thr96 in the lid hinge region of Rhizopus chinensis lipase.
    Zhu SS; Li M; Yu X; Xu Y
    Appl Biochem Biotechnol; 2013 May; 170(2):436-47. PubMed ID: 23546870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [State of Fungal Lipases of Rhizopus microsporus, Penicillium sp. and Oospora lactis in Border Layers Water-Solid Phase and Factors Affecting Catalytic Properties of Enzymes].
    Khasanov KhT; Davranov K; Rakhimov MM
    Prikl Biokhim Mikrobiol; 2015; 51(5):511-9. PubMed ID: 26596088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increase in the activity of Rhizopus delemar lipase on water-soluble esters by its binding with phosphatidylcholine.
    Shimada Y; Tominaga Y; Iwai M; Tsujisaka Y
    J Biochem; 1983 Jun; 93(6):1655-60. PubMed ID: 6885742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of residues essential for differential fatty acyl specificity of Geotrichum candidum lipases I and II.
    Holmquist M; Tessier DC; Cygler M
    Biochemistry; 1997 Dec; 36(48):15019-25. PubMed ID: 9398228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel minor lipase from Rhizopus chinensis during solid-state fermentation: biochemical characterization and its esterification potential for ester synthesis.
    Sun SY; Xu Y; Wang D
    Bioresour Technol; 2009 May; 100(9):2607-12. PubMed ID: 19157870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of a Rhizopus chinensis lipase into an esterase by lid swapping.
    Yu XW; Zhu SS; Xiao R; Xu Y
    J Lipid Res; 2014 Jun; 55(6):1044-51. PubMed ID: 24670990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipases That Activate at High Solvent Polarities.
    Skjold-Jørgensen J; Vind J; Svendsen A; Bjerrum MJ
    Biochemistry; 2016 Jan; 55(1):146-56. PubMed ID: 26645098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of Glu87 and Trp89 in the lid of Humicola lanuginosa lipase.
    Martinelle M; Holmquist M; Clausen IG; Patkar S; Svendsen A; Hult K
    Protein Eng; 1996 Jun; 9(6):519-24. PubMed ID: 8862552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in hydrolytic abilities of two crude lipases from Geotrichum candidum 4013.
    Brabcová J; Zarevúcka M; Macková M
    Yeast; 2010 Dec; 27(12):1029-38. PubMed ID: 20824885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.